iNCE CiDARLI BASINÇLI TÜPLERiN SONLU ELEMANLAR YÖNTEMiYLE ANALiZi

Bu çalısmada ince cidarlı basınçlı tüplerde ASTM standartlarında belirtilen iki farklı çelik için basınç etkisi altında gerilme analizi yapılmıstır. İki boyutlu ve üç boyutlu sonlu elemanlar modelleri Ansys 9.0 yardımıyla olusturulmus, üç boyutlu model tasarım yönünden iki farklı sekilde incelenmistir. Maksimum gerilme kriteri yardımıyla patlama basınçları bulunmus, tüp üzerindeki hasarlı bölgeler belirlenmistir. Hasar sonuçları Von Mises kriteri sonuçları ve standartlardan elde edilen analitik sonuçları ile karsılastırılmıstır. İnce cidarlı basınçlı tüplerin sonlu elemanlar analizinde olusturulan modelin, tasarımsal etkilerin etkinligi ortaya çıkmıstır. Analize dayalı patlama basıncı sonuçları standartlardan elde edilen analitik sonuçlara göre daha yüksek bulunmustur.

FINITE ELEMENT ANALYSIS OF THIN WALLED PRESSURE VESSELS

In this study thin walled pressure vessels made from two different materials refered in ASTM standarts were analysed under pressure. Two and three dimensional finite element models were constructed by Ansys 9.0, three dimensional model was studied for two different designs. Failure analysis was performed with stress resultants. Burst pressures and critical areas were obtained by using maximum stress criteria. Failure resultants were compared with Von Mises yield criteria and analytical results of standarts. It was found that finite element models, design criterias and material properties are effective tools for analysis. The burst pressure results based on finite element analysis were found higher than the results of analytical solutions based on the standarts .

___

  • ASTM Boiler and Pressure Vessel Code. 1989. Section VIII. Pressure Vessels Division 3. New York: ASME.
  • British Standarts Institution. 1986. Unfired Fusion Welded Pressure Vessels. BS5500, BSI.
  • Diamantoudis, A. T. and Kermanidis, T. 2005. Design by Analysis Versus Design by Formula of High Strength Steel Pressure Vessels: a Comparative study. International Journal of Pressure Vessels and Piping 82, 43-50.
  • Doğan, T. 2006. Prediction of composite vessels under various loadings, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • European Committee for Standardization, 2002. EN 13445–3. Annex B: direct route for design by analysis.
  • Environment, Safety and Health Internet Manual Volume II, 2007. University of California.
  • Galletly, G.D. 1979. Plastic buckling of torispherical and ellipsoidal shells subjected to internal pressure. Proc. Inst. Mech Eng., 195, 329-345.
  • Hyder, M. J. and Asif, M. 2007. Optimisation of location and size of opening pressure vessel cylinder using Ansys. Engineering Failure Analysis 15, 1–19.
  • Kandaz, M. 2006. Computer aided design and structural analysis of pressure vessels. Ortadoğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Leckie, F. A. and Penny, R. K. 1963. Solutions for the stresses at nozzles in pressure vessels. Welding Research Council Bulletin No: 90.
  • Muskat, M., Mackenzie, D. and Hamilton, R. 2003. A work criterion for plastic collapse. Int. Journal Press Vessel Piping 80, 49–58.
  • Oh, Y. J., Lim, J., Jeong, K. J., Hwang, S. 2007. Bottom Nozzle Failure Mechanism of Water Reactor Pressure Vessel Under Severe Accident Conditions. Nuclear Engineering and Design. 237, 16-27.
  • Önder, A. 2007. First Ply Failure of Pressure of Composite Pressure Vessels. Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi.
  • Petrovic, A. 2001. Stress Analysis in Cylindrical Pressure Vessels With Loads Applied to the Free end Nozzle. Int Journal Press Vessel Piping 78, 485493.
  • Radkowski, P. P., Davis, R. M., Bolduc, M. R. 1960. A Numerical Analysis of the Equations of Thin Shells of Revolution p. 1580-1560.
  • Sang, Z. F., Xue, L .P., Lin, Y. J. and Widera, G. E. O. 2002. Limit and burst pressures for a cylindrical shell ıntersection with ıntermediate diameter ratio. Int. Journal Press Vessel Piping 79, 341-349.
  • Timoshenko, S. 1955. Strength of Material, Part I: Elementary Theory and Problems.
  • Tiniş, F. ve Bazman, F. 2005. Silindirik ince cidarlı basınçlı kolonların artan deprem yüklerine karşı takviyelendirilmesi. TMMOB Makina Mühendisleri Odası Konya Şubesi III. Makina Tasarım ve İmalat Teknolojileri Kongresi.
  • TS-EN–1964–2 TSE Nisan 2003. Internet Manual. Watts, G. W. and Lang, H. A. 1953. The Stresses in a pressure vessel with hemispherical head. Trans. Asme 75, 83-89.
  • Yeom, D. J. and Robinson, M. 1996. Numerical Analysis of the elastic-plastic behaviour of pressure vessels with ellipsoidal and torispherical heads. Int. Journal Press. Vessel Piping 65, 147–156.