ALFA METODU KULLANILARAK 'BASAMAK KIRILMA İNDİSLİ TEKLİ DALGA KILAVUZLARI'NDA SOGURMA VE KAZANÇ KATSAYILARINA İLİSKİN KULLANISLI BİR ANALİZ

Bu çalısmada, adım kırılma indisli tekli dalga kılavuzlu lazerde veya adım kırılma indisli tekli dalga kılavuzunda hapsedilmis elektron ve delik gibi tasıyıcılara ait enerji özdegerlerinin fonksiyonları olan bazı parametrelere baglı normalize frekans ve özellikle normalize yayılım sabiti gibi tasarım parametreleri elde edilmistir. Adım kırılma indisli tekli dalga kılavuzunun veya adım kırılma indisli tekli dalga kılavuzlu lazerin aktif ve gömlek bölgeleri için optik güç ve olasılık nicelikleri ile ilgili bazı optik ifadeler, bu parametreler cinsinden incelenmistir. Arastırmalar bu parametreler cinsinden yapılmıstır ve de teorik olarak en düsük çift ve tek modlu optik elektrik alan dalgaları için ayrı ayrı hesaplanmıstır. Çift ve tek elektrik alan dalgaları için, adım kırılma indisli tekli dalga kılavuzlu lazerlerde bazı önemli büyüklüklere ilave olarak özellikle sogurma ve kayıp katsayıları degerlendirilmistir.

AN EFFICIENT ANALYSIS FOR ABSORPTION AND GAIN COEFFICIENTS IN 'SINGLE STEP-INDEX WAVEGUIDE'S BY USING THE ALPHA METHOD

In this study, some design parameters such as normalized frequency and especially normalized propagation constant have been obtained, depending on some parameters which are functions of energy eigenvalues of the carriers such as electrons and holes confined in a single step-index waveguide laser (SSIWGL) or single stepindex waveguide (SSIWG). Some optical expressions about the optical power and probability quantities for the active region and cladding layers of the SSIWG or SSIWGL have been investigated. Investigations have been undertaken in terms of these parameters and also individually the optical even and odd electric field waves with the lowest-modes were theoretically computed. Especially absorption coefficients and loss coefficients addition to some important quantities of the single step-index waveguide lasers for the even and odd electric field waves are evaluated.

___

  • Bhattacharya, P. 1998. Semiconductor Optoelectronic Devices, New Jersey.
  • Carroll, J., Whiteaway, J. and Plumb, D. 1998. Distributed Feedback Semiconductor Lasers, Trowbridge.
  • Chow, W.W. and Koch, S.W. 1999. Semiconductor Laser Fundamentals, Springer.
  • Gasiorowicz, S. 1974. Quantum Physics, John Wiley and Sons. Inc.
  • Harrison, P. 2000. Waveguides, Wires and Dots, John Wiley and Sons. Inc.
  • Iga, K. 1994. Fundamentals of Laser Optics, Plenum Press.
  • Kazarinov, R.F. and Belenky, G. L. 1995. Novel design of the AlGaInAs-InP lasers operating at 1.3µm, IEEE Journal of Quantum Electronics 31, 424.
  • Popescu, V. A. 2005. Determination of normalized propagation constant for optical waveguides by using second order variation method, Journal of Optoelectronics and Advanced Materials 7, 2783-2786.
  • Pozar, D. M. 1998. Microwave Engineering, John Wiley and Sons. Inc.
  • Schiff, L. I. 1982. Quantum Mechanics, Graw-Hill Book Comp.
  • Temiz, M. 2002. Impacts on the confinement factor of the propagation constants of optical fields in the some semiconductor devices, Laser Phys., 12, 989.
  • Temiz, M. 2001. The effects of some parameters of the propagation constant for heterojunction constructions on the optical modes, Laser Phys., 3, 297.
  • Verdeyen, J. T. 1989. Laser Electronics, PrenticeHall, London.