Güneş ışığı altında ?₃?₄/??? − ??(??) kullanılarak ??(??)’nın giderimi

?₃?₄/??? − 51(??) hibrit nanokompoziti bir tekstil endüstrisi atık suyundaki ??(??)'yı azaltmak için geliştirilmiştir. ?₃?₄/??? − 51(??) kristal özellikli olup bu kompozitin merkezindeki karboksil gruplarının fotoparçalanma reaksiyonu C-H bağlanmasıyla ilgilidir. 1.6 mg/L ??(??)'yı yaz ayında %98’lik maksimum verimle gidermek için optimum koşullar; 1.2 mg/L ?₃?₄/??? − 51(??), 15 dk. temas süresi, 80 mW/m2 güneş ışığı şiddeti ve 42 °? sıcaklıktır. ?₃?₄/??? − 51(??)nanopartikülü 5 kez kullanıldıktan sonra %97 verimle geri kullanılmıştır. ??(??) giderimi Langmuir-Hinshelwood (L-H) kinetik modelle açıklanmıştır. ??(??) giderimi Langmuir-Hinshelwood (L-H) kinetik modelle açıklanmıştır.

Remediation of ??(??)using ?₃?₄/??? − ??(??)under sun light irradiation

A hybrid nanocomposite namely ?₃?₄/??? − 51(??) was developed toreduce the ??(??) from a textile industry wastewater.?₃?₄/??? − 51(??) exhibited a good cristalinity. The photocatalyticreaction of the carboxyl groups of the composite is in center and it isassociated with the C-H-vibration. The optimal doping content of?₃?₄/??? − 51(??) was determined to be 1.2 mg/L to treat 1.6 mg/L??(??) with a maximum yield of 98% at a sun light power of 80 mW/m2after 15 min at 42 °? in summer. After 5th times sun light experiments,the ?₃?₄/??? − 51(??) was reused with a yield of 97%. The ??(??)reduction was explained with the Langmuir-Hinshelwood (L-H) kineticmodel.

___

  • [1] Zhao G, Li J, Ren X, Chen C, Wang X. “Few-layered graphene oxide nano sheets as superior sorbents for heavy metal ion pollution management”. Environmantal Science and Technology, 45, 10454-10462, 2011.
  • [2] Ross D, Ketterings Q. Recommended Methods for Determining Soil Cation Exchange Capacity. Publisher University of Delaware Newark DE, Northeastern United States, 1995.
  • [3] Mohammed AS, Kapri A, Goel R. “Heavy metal pollution: source, impact and remedies”. Biomanagement of Metal-Contaminated Soils, 9(1), 1-28, 2011.
  • [4] Aremu MO, Atolaiye BO, Labaran L. “Environmental implication of metal concentrations in soil, plant foods and pond in area around the derelict udege mines of nasarawa state”. Nigeria Chemical Society Ethiopia, 24(3), 351-360, 2010.
  • [5] Kieber RJ, Willey JD, Zvalaren SD. “Chromium speciation in rainwater: temporal variability and atmospheric deposition”. Environmantal Science and Technology, 36, 5321-5327, 2002.
  • [6] Testa JJ, Grela MA, Litter MI.“Heterogeneous photocatalytic reduction of chromium (VI) over $TiO_2$ particles in the presence of oxalate: involvement of Cr(VI) species”. Environmental Science and Technology, 38, 1589-1594, 2014.
  • [7] Qiu B, Xu CX, Sun DZ, Wei HG, Zhang X, Guo J, Wang Q, Rutman D, Guo ZH, Wei SY. “Polyaniline coating on carbon fiber fabrics for improved hexavalent chromium removal”. RSC Advances, 4, 29855-29865, 2014.
  • [8] Lv ZF, Liang CS, Cui JY, Zhang YA, Xu S. “A facile route for the synthesis of mesoporous melamine-formaldehyde resins for hexavalent chromium removal”. RSC Advances, 5, 18213-18217, 2015.
  • [9] Cai L, Xiong X, Liang N, Long Q. “Highly effective and stable $Ag_3PO_4$-$WO_3$/$WCNTs photocatalysts for simultaneous Cr(VI) reduction and orange II degradation under visible light irradiation”. Applied Surface Science, 353, 939-948, 2015.
  • [10] Rajeshwar K, Chenthamarakshan CR, Goeringer S, Djukic M. “Titania-based heterogeneous photocatalysis. Materials, mechanistic issues, and implications for environmental remediation”. Pure and Applied Chemistry, 73(12), 1849-1860, 2001.
  • [11] Bailey SE, Olin TJ, Bricka RM, Adrian DD. “A review of pontentially low-cost sorbents for heavy metals”. Water Research, 33(11), 2469-2479, 1999.
  • [12] Dresselhaus MS, Thomas IL. “Alternative energy technologies”. Nature, 414, 332-337, 2014.
  • [13] Maeda K, Takata T, Ha M, Saito N, Domen KJ. “GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting”. American Chemical Society, 127, 8286-8287, 2005.
  • [14] Niu S-f, Liu Y, Xu X-h, Lou Z-h. “Removal of hexavalent chromium from aqueous solution by iron nanopartlcles”. Journal of Zhejiang University, 6B(10), 1022-1027, 2005.
  • [15] Huang W, Liua N, Zhanga X, Wub M, Tang L. “Metal organic framework $g-C_3N_4$/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(VI) reduction under visible light”. Applied Surface Science, 425, 107-116, 2017.
  • [16] Niu P, Zhang L, Liu G, Cheng H-M. “Graphene‐like carbon nitride nanosheets for improved photocatalytic activities”. Advanced Functional Materials, 22, 4763-4770, 2012.
  • [17] Gürkan R, Ulusoy HI, Akçay M. “Simultaneous determination of dissolved inorganic chromium species in wastewater/natural waters by surfactant sensitized catalytic kinetic spectrophotometry”. Arabian Journal of Chemistry, 10, 450-460, 2017.
  • [18] Akple MS, Low J, Wageh S, Al-Ghamdi AA, Yu J, Zhang J. “Enhanced visible light photocatalytic $H_2$-production of $gC_3N_4$/WS2 composite heterostructures”. Applied Surface Science, 358, 196-203, 2015.
  • [19] Wen J, Xie J, Yang Z, Shen R, Li H, Luo X, Li X. “Fabricating the robust g-$C_3N_4$ nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: an insight into the trifunctional roles of nanocarbons”. ACS Sustain, Chemical Engineering, 5(3), 2224-2236, 2017.
  • [20] Cao K, Jiang Z, Zhang X, Zhang Y, Zhao J, Xing R, Yang S, Gao C, Pan F. “Highlywater-Selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix”. Journal of Membrane Science, 490, 72-83, 2015.
  • [21] Llewellyn PL, Horcajada P, Maurin G, Devic T, Rosenbach N, Bourrelly S, Serre C, Vincent D, Loera-Serna S. “Linear alkanes in the flexible metal-organic-framework MIL53(Fe)”. Journal of the American Chemical Society, 131, 13002-13008, 2009.
  • [22] Hu SZ, Ma L, You JG, Li FY, Fan ZP, Wang F, Liu FD, Gui JZ. “A simple andefficient method to prepare a phosphorus modified g-C3N4 visible light photocatalyst”. RSC Advances, 4, 21657-21663, 2014.
  • [23] Wang H, Yuan XZ, Wu Y, Zeng GM, Chen XH, Leng LJ, Li H. “Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal”. Applied Catalysis B, 174, 445-454, 2015.
  • [24] Hong J, Chen C, Bedoya FE, Kelsall GH, O’Hare D, Petit C. “Carbon nitridenanosheet/metal-organic framework nanocomposites with synergistic photocatalytic activities”. Catalysis Science & Technology, 6, 5042-5051, 2016.
  • [25] Du JJ, Yuan YP, Sun JX, Peng FM, Jiang X, Qiu LG, Xie AJ, Shen YH, Zhu JF. “New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye”. Journal of Hazardous Materials, 190, 945-951, 2011.
  • [26] He F, Chen G, Zhou Y, Yu Y, Zheng YS. “The facile synthesis of mesoporous g-C3N4 with highly enhanced photocatalytic H2 evolution performance”. Chemical Communications, 51(90), 16244-16246, 2015.
  • [27] Zhu Z, Murugananthan M, Gu J, Zhang Y. “Fabrication of a Z-scheme g-C3N4/Fe-TiO2 photocatalytic composite with enhanced photocatalytic activity under visible light”. Irradiation Catalysts, 8(3), 112-120, 2018.
  • [28] Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A, Zhang W, Zhu Z, Smith SC, Jaroniec M, Lu GQ, Qiao SZ. “Nanoporous Graphitic-C3N4@Carbon Metal-free electrocatalysts for highly efficient oxygen reduction”. Journal of the American Chemical Society, 133(50), 20116-20119, 2011.
  • [29] Wan SL, He F, Wu JY, Wan WB, Gu YW, Gao B, Hazard J. “Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nano composites”. Journal of Hazardous Materials, 314, 32-40, 2016.
  • [30] Wang X, Liang Y, An W, Hu J, Zhu Y, Cui W. “Removal of chromium (VI) by a self-regenerating and metal free $gC_3N_4$/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light”. Applied Catalysis B: Environmental, 219, 53-62, 2017.
  • [31] Nguyen AT, Juang RS. “Photocatalytic degradation of pchlorophenol by hybrid $H_2O_2$ and $TiO_2$ in aqueous suspensions under UV irradiation”. Journal of Environmental Management, 147, 271-277, 2015.
  • [32] Zeghioud H, Khellaf N, Djelal H, Amrane A, Bouhelassa M. “Photocatalytic reactors dedicated to the degradation of hazardous organic pollutants: kinetics, mechanistic aspects and design”. Chemical Engineering Communications, 203, 1415-1431, 2016.
  • [33] Zuo Y, Zhan, J, Wu T. “Effects of Monochromatic UV-Visible Light and Sunlight on Fe(III)-Catalyzed Oxidation of Dissolved Sulfur Dioxide”. Journal of Atmospheric Chemistry, 50, 195-210, 2005.
  • [34] Jing F, Liang R, Xiong J, Chen R, Zhang S, Li Y. “MIL-68 (Fe) as an efficient visible-light-driven photocatalyst for the treatment of a simulated waste-water contain Cr (VI) and Malachite Green”. Applied Catalysis B: Environmental, 206, 9-15, 2017.
  • [35] Assadi AA, Palau J, Bouzaza A, Wolbert D. “Modeling of a continuous photocatalytic reactor for isovaleraldehyde oxidation: Effect of different operating parameters and chemical degradation pathway”. Chemical Engineering Research and Design, 91(7), 1307-1316, 2013.
  • [36] Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X. “Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions”. Environmental Science and Technology, 50(14), 7290-7304, 2016.
  • [37] Testa JJ, Grela MA, Litter MI. “Experimental evidence in favor of an initial one-electron-transfer process in the heterogeneous photocatalytic reduction of chromium (VI) over $TiO_2$”. Langmuir, 17, 3515-3517, 2001.
  • [38] Das DP, Parida K, De BR. “Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation”. Journal of Molecular Catalysis A: Chemical, 245, 217-224, 2006.
  • [39] Wang L, Wang N, Zhu L, Yu H, Tang H. “Photocatalytic reduction of Cr(VI) over different $TiO_2$ photocatalysts and the effects of dissolved organic species”. Journal of Hazardous Materials, 152(1), 93-99, 2008.
  • [40] Guo D, Wen R, Liu M, Guo H, Chen J, Weng W. “Facile fabrication of g-$C_3N_4$/MIL-53(Al) composite with enhanced photocatalytic activities under visible-light irradiation”. Applied Organometallic Chemistry, 29, 690-697, 2015.
  • [41] Oladipo AA. “MIL-53 (Fe)-based photo-sensitive composite for degradation of organochlorinated herbicide and enhanced reduction of Cr(VI)”. Process Safety and Environmental Protection, 116, 413-423, 2018.
  • [42] Jiang F, Zheng Z, Xu Z, Zheng S, Guo Z, Chen L. “Aqueous Cr(VI) photoreduction catalyzed by TiO2 and sulfated $TiO_2$”. Journal of Hazardous Materials, 134(1-3), 94-103, 2006.
  • [43] Chakrabarti S, Chaudhuri B, Bhattacharjee S, Ray AK, Dutta BK. “Photoreduction of hexavalent chromium in aqueous solution in the presence of zincoxide as semiconductor catalyst”. Chemical Engineering Journal, 153(1-3), 86-93, 2009.
  • [44] Kabra K, Chaudhary R. “Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis”. Industrial & Engineering Chemistry Research, 43(24), 7683-7696, 2004.
  • [45] Cappelletti G, Bianchi CL, Ardizzone S. “Nano-titania assisted photoreduction of Cr(VI): The role of the different $TiO_2$ polymorphs”. Applied Catalysis B: Environmental, 78(3-4), 193-201, 2008.
  • [46] Zhou M, Yu J, Cheng B. “Effects of Fe-doping on the photocatalytic activity of mesoporous $TiO_2$ powders prepared by an ultrasonic method”. Journal of Hazardous Materials, 137(3), 1838-1847, 2006.
  • [47] Ku Y, Jung IL. “Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide”. Water Research, 35, 135-142, 2001.
  • [48] Hoffmann MR, Martin ST, Choi W, Bahnemann D. “Environmental applications of semiconductor photocatalysis”. Chemical Reviews, 95, 69-96, 1995.
  • [49] Grela MA, Loeb B, Restrepo GM, Lagorio MG. Román ES. Los Mecanismos De Destrucción. Ed. Miguel Blesa, Capítulo 5 en: Eliminación de Contaminantes por Fotocatálisis Heterogénea, $8^th$ ed. 125-162, La Plata, Buenos Aires, Argentina, 2004.
  • [50] Grela MA, Colussi AJ. “Kinetics of stochastic charge transfer and recombination events in semiconductor colloids, relevance to photocatalysis efficiency”. The Journal of Physical Chemistry, 100, 18214-18221, 1996.
  • [51] Kamat PV. “Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design”. The Journal of Physical Chemistry Letters, 3, 663-671, 2012.
  • [52] Martin ST, Herrmann H, Hoffmann MR. “Time-resolved microwave conductivity. Part 2.-Quantum-sized $TiO_2$, and the effect of adsorbates and light intensity on charge-carrier dynamics”. Journal of the Chemical Society, Faraday Transactions, 90, 3323-3330, 1994.
  • [53] Meichtry JM, Brusa M, Mailhot G, Grela MA, Litter MI. “Heterogeneous photocatalysis of Cr(VI) in the presence of citric acid over $TiO_2$ particles: relevance of Cr(V) citrate complexes’’. Applied Catalysis B, 71, 101-107, 2007.
  • [54] Meichtry JM, Colbeau-Justin C, Custo G, Litter MI. “$TiO_2$- photocatalytic transformation of Cr(VI) in the presence of EDTA: comparison of different commercial photocatalysts and studies by time resolved microwave conductivity’’. Applied Catalysis B, 144, 189-195, 2014.
  • [55] Montesinos VN, Salou C, Meichtry JM, Colbeau-Justin C. “Litter MI Role of Cr(III) deposition during the photocatalytic transformation of hexavalent chromium and citric acid over commercial TiO2 samples”. Photochemical & Photobiological Sciences, 15, 228-234, 2016.
  • [56] Ananpattarachai J, Kumket P, Tung TV, Kajitvichyanukul P. “Chromium (VI) removal using nano-$TiO_2$/chitosan film in photocatalytic System”. International Journal of Environment and Waste Management, 16, 55-70, 2015.
  • [57] Wang N, Xu Y, Zhu L, Shen X, Tang H. “Reconsideration to the deactivation of $TiO_2$ catalyst during simultaneous photocatalytic reduction of Cr(VI) and oxidation of salicylic acid”. Journal of Photochemistry, 201(2-3), 121-127, 2009.
  • [58] Meichtry JM, Dillert R, Bahnemann D, Litter MI. “Application of the stopped flow technique to the $TiO_2$- heterogeneous photocatalysis of hexavalent chromium in aqueous suspensions: comparison with $O_2$ and $H_2O_2$ as electron acceptors”. Langmuir, 31, 6229-6236, 2015.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Kordon bazlı trafik tıkanıklık fiyatlandırılmasına örnek bir uygulama: Erzurum, Cumhuriyet Caddesi

Muhammed Yasin ÇODUR, Harun COŞKUN

Özdirenç yöntemi kullanılarak donatılı betonların anizotropisinin belirlenmesi

Nevbahar SABBAĞ, Osman UYANIK

Polimineral içerikli seramik bir numunenin lüminesans tekniklerle eşdeğer dozunun belirlenmesinde farklı bir yöntemin kullanımı

Mehmet Altay ATLIHAN

İçme sularından tat ve kokunun giderimi: İstanbul’daki kurulu su arıtma tesislerinde performans değerlendirmesi ve iyileştirilmesi

Malhun FAKIOĞLU, Mahmut Ekrem KARPUZCU, İsmail TORÖZ, Fatih YILDIZ

Avrupa Birliği üye ülkeler ve aday olan Türkiye’nin atık indikatörlerine göre kümelenmesinde optimum küme sayısının Silhouette indeksi ile belirlenmesi

Tuğba SÖKÜT AÇAR, Nilgün AYMAN ÖZ

Sulamada nitratla kirlenmiş yeraltısuyu kullanımının modellenmesi

Güray HATİPOĞLU, Zöhre KURT

Uzay kafes çatı sistemlerinin artan düşey yükler altında sünekliğinin araştırılması

Cüneyt VATANSEVER, Haluk Emre ALÇİÇEK

Sızıntı suyu membran konsantre akımının yönetiminde en uygun metodun analitik hiyerarşi prosesi ile belirlenmesi

Nevim GENÇ, Elif DURNA

Üreaz ve karbonik anhidraz pozitif bakteriler tarafindan kalsiyum karbonat çökelimi

Naime Nur BOZBEYOĞLU, Tuğba ŞENSOY CANDOĞAN, Şevki ARSLAN, Buket KABALAY, Ömer BOZKAYA, Erdal AKYOL, Nazime MERCAN DOĞAN

Güneş ışığı altında ?₃?₄/??? − ??(??) kullanılarak ??(??)’nın giderimi

Sevil AKÇAĞLAR