Güneş ışığı altında C₃N₄/DEU-51(Fe) kullanılarak Cr(VI)’nın giderimi

C₃N₄/DEU-51(Fe) hibrit nanokompoziti bir tekstil endüstrisi atık suyundaki Cr(VI)'yı azaltmak için geliştirilmiştir. C₃N₄/DEU-51(Fe) kristal özellikli olup bu kompozitin merkezindeki karboksil gruplarının fotoparçalanma reaksiyonu C-H bağlanmasıyla ilgilidir. 1.6 mg/L Cr(VI)'yı yaz ayında %98’lik maksimum verimle gidermek için optimum koşullar; 1.2 mg/L C₃N₄/DEU-51(Fe), 15 dk. temas süresi, 80 mW/m2 güneş ışığı şiddeti ve 42 °C sıcaklıktır. C₃N₄/DEU-51(Fe)nanopartikülü 5 kez kullanıldıktan sonra %97 verimle geri kullanılmıştır. Cr(VI) giderimi Langmuir-Hinshelwood (L-H) kinetik modelle açıklanmıştır. Cr(VI) giderimi Langmuir-Hinshelwood (L-H) kinetik modelle açıklanmıştır.

Remediation of Cr(VI)using C₃N₄/DEU-51(Fe)under sun light irradiation

A hybrid nanocomposite namely C₃N₄/DEU-51(Fe) was developed to reduce the Cr(VI) from a textile industry wastewater. C₃N₄/DEU-51(Fe) exhibited a good cristalinity. The photocatalytic reaction of the carboxyl groups of the composite is in center and it is associated with the C-H-vibration. The optimal doping content of C₃N₄/DEU-51(Fe) was determined to be 1.2 mg/L to treat 1.6 mg/L Cr(VI) with a maximum yield of 98% at a sun light power of 80 mW/m2 after 15 min at 42 °C in summer. After 5th times sun light experiments, the C₃N₄/DEU-51(Fe) was reused with a yield of 97%. The Cr(VI) reduction was explained with the Langmuir-Hinshelwood (L-H) kinetic model.

___

  • Zhao G, Li J, Ren X, Chen C, Wang X. “Few-layered graphene oxide nano sheets as superior sorbents for heavy metal ion pollution management”. Environmantal Science and Technology, 45, 10454-10462, 2011.
  • Ross D, Ketterings Q. Recommended Methods for Determining Soil Cation Exchange Capacity. Publisher University of Delaware Newark DE, Northeastern United States, 1995.
  • Mohammed AS, Kapri A, Goel R. “Heavy metal pollution: source, impact and remedies”. Biomanagement of Metal-Contaminated Soils, 9(1), 1-28, 2011.
  • Aremu MO, Atolaiye BO, Labaran L. “Environmental implication of metal concentrations in soil, plant foods and pond in area around the derelict udege mines of nasarawa state”. Nigeria Chemical Society Ethiopia, 24(3), 351-360, 2010.
  • Kieber RJ, Willey JD, Zvalaren SD. “Chromium speciation in rainwater: temporal variability and atmospheric deposition”. Environmantal Science and Technology, 36, 5321-5327, 2002.
  • Testa JJ, Grela MA, Litter MI.“Heterogeneous photocatalytic reduction of chromium (VI) over TiO2 particles in the presence of oxalate: involvement of Cr(VI) species”. Environmental Science and Technology, 38, 1589-1594, 2014.
  • Qiu B, Xu CX, Sun DZ, Wei HG, Zhang X, Guo J, Wang Q, Rutman D, Guo ZH, Wei SY. “Polyaniline coating on carbon fiber fabrics for improved hexavalent chromium removal”. RSC Advances, 4, 29855-29865, 2014.
  • Lv ZF, Liang CS, Cui JY, Zhang YA, Xu S. “A facile route for the synthesis of mesoporous melamine-formaldehyde resins for hexavalent chromium removal”. RSC Advances, 5, 18213-18217, 2015.
  • Cai L, Xiong X, Liang N, Long Q. “ Highly effective and stable Ag3PO4-WO3/MWCNTs photocatalysts for simultaneous Cr(VI) reduction and orange II degradation under visible light irradiation”. Applied Surface Science, 353, 939-948, 2015.
  • Rajeshwar K, Chenthamarakshan CR, Goeringer S, Djukic M. “Titania-based heterogeneous photocatalysis. Materials, mechanistic issues, and implications for environmental remediation”. Pure and Applied Chemistry, 73(12), 1849-1860, 2001.
  • Bailey SE, Olin TJ, Bricka RM, Adrian DD. “A review of pontentially low-cost sorbents for heavy metals”. Water Research, 33(11), 2469-2479, 1999.
  • Dresselhaus MS, Thomas IL. “Alternative energy technologies”. Nature, 414, 332-337, 2014.
  • Maeda K, Takata T, Ha M, Saito N, Domen KJ. “GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting”. American Chemical Society, 127, 8286-8287, 2005.
  • Niu S-f, Liu Y, Xu X-h, Lou Z-h. “Removal of hexavalent chromium from aqueous solution by iron nanopartlcles”. Journal of Zhejiang University, 6B(10), 1022-1027, 2005.
  • Huang W, Liua N, Zhanga X, Wub M, Tang L. “Metal organic framework g-C3N4/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(VI) reduction under visible light”. Applied Surface Science, 425, 107-116, 2017.
  • Niu P, Zhang L, Liu G, Cheng H-M. “Graphene‐like carbon nitride nanosheets for improved photocatalytic activities”. Advanced Functional Materials, 22, 4763-4770, 2012.
  • Gürkan R, Ulusoy HI, Akçay M. “Simultaneous determination of dissolved inorganic chromium species in wastewater/natural waters by surfactant sensitized catalytic kinetic spectrophotometry”. Arabian Journal of Chemistry, 10, 450-460, 2017.
  • Akple MS, Low J, Wageh S, Al-Ghamdi AA, Yu J, Zhang J. “Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures”. Applied Surface Science, 358, 196-203, 2015.
  • Wen J, Xie J, Yang Z, Shen R, Li H, Luo X, Li X. “Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: an insight into the trifunctional roles of nanocarbons”. ACS Sustain, Chemical Engineering, 5(3), 2224-2236, 2017.
  • Cao K, Jiang Z, Zhang X, Zhang Y, Zhao J, Xing R, Yang S, Gao C, Pan F. “Highlywater-Selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix”. Journal of Membrane Science, 490, 72-83, 2015.
  • Llewellyn PL, Horcajada P, Maurin G, Devic T, Rosenbach N, Bourrelly S, Serre C, Vincent D, Loera-Serna S. “Linear alkanes in the flexible metal-organic-framework MIL-53(Fe)”. Journal of the American Chemical Society, 131, 13002-13008, 2009.
  • Hu SZ, Ma L, You JG, Li FY, Fan ZP, Wang F, Liu FD, Gui JZ. “A simple andefficient method to prepare a phosphorus modified g-C3N4 visible light photocatalyst”. RSC Advances, 4, 21657-21663, 2014.
  • Wang H, Yuan XZ, Wu Y, Zeng GM, Chen XH, Leng LJ, Li H. “Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal”. Applied Catalysis B, 174, 445-454, 2015.
  • Hong J, Chen C, Bedoya FE, Kelsall GH, O’Hare D, Petit C. “Carbon nitridenanosheet/metal-organic framework nanocomposites with synergistic photocatalytic activities”. Catalysis Science & Technology, 6, 5042-5051, 2016.
  • Du JJ, Yuan YP, Sun JX, Peng FM, Jiang X, Qiu LG, Xie AJ, Shen YH, Zhu JF. “New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye”. Journal of Hazardous Materials, 190, 945-951, 2011.
  • He F, Chen G, Zhou Y, Yu Y, Zheng YS. “The facile synthesis of mesoporous g-C3N4 with highly enhanced photocatalytic H2 evolution performance”. Chemical Communications, 51(90), 16244-16246, 2015.
  • Zhu Z, Murugananthan M, Gu J, Zhang Y. “Fabrication of a Z-scheme g-C3N4/Fe-TiO2 photocatalytic composite with enhanced photocatalytic activity under visible light”. Irradiation Catalysts, 8(3), 112-120, 2018.
  • Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A, Zhang W, Zhu Z, Smith SC, Jaroniec M, Lu GQ, Qiao SZ. “Nanoporous Graphitic-C3N4@Carbon Metal-free electrocatalysts for highly efficient oxygen reduction”. Journal of the American Chemical Society, 133(50), 20116-20119, 2011.
  • Wan SL, He F, Wu JY, Wan WB, Gu YW, Gao B, Hazard J. “Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nano composites”. Journal of Hazardous Materials, 314, 32-40, 2016.
  • Wang X, Liang Y, An W, Hu J, Zhu Y, Cui W. “Removal of chromium (VI) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light”. Applied Catalysis B: Environmental, 219, 53-62, 2017.
  • Nguyen AT, Juang RS. “Photocatalytic degradation of p-chlorophenol by hybrid H2O2 and TiO2 in aqueous suspensions under UV irradiation”. Journal of Environmental Management, 147, 271-277, 2015.
  • Zeghioud H, Khellaf N, Djelal H, Amrane A, Bouhelassa M. “Photocatalytic reactors dedicated to the degradation of hazardous organic pollutants: kinetics, mechanistic aspects and design”. Chemical Engineering Communications, 203, 1415-1431, 2016.
  • Zuo Y, Zhan, J, Wu T. “Effects of Monochromatic UV-Visible Light and Sunlight on Fe(III)-Catalyzed Oxidation of Dissolved Sulfur Dioxide”. Journal of Atmospheric Chemistry, 50, 195-210, 2005.
  • Jing F, Liang R, Xiong J, Chen R, Zhang S, Li Y. “MIL-68 (Fe) as an efficient visible-light-driven photocatalyst for the treatment of a simulated waste-water contain Cr (VI) and Malachite Green”. Applied Catalysis B: Environmental, 206, 9-15, 2017.
  • Assadi AA, Palau J, Bouzaza A, Wolbert D. “Modeling of a continuous photocatalytic reactor for isovaleraldehyde oxidation: Effect of different operating parameters and chemical degradation pathway”. Chemical Engineering Research and Design, 91(7), 1307-1316, 2013.
  • Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X. “Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions”. Environmental Science and Technology, 50(14), 7290-7304, 2016.
  • Testa JJ, Grela MA, Litter MI. “Experimental evidence in favor of an initial one-electron-transfer process in the heterogeneous photocatalytic reduction of chromium (VI) over TiO2”. Langmuir, 17, 3515-3517, 2001.
  • Das DP, Parida K, De BR. “Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation”. Journal of Molecular Catalysis A: Chemical, 245, 217-224, 2006.
  • Wang L, Wang N, Zhu L, Yu H, Tang H. “Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species”. Journal of Hazardous Materials, 152(1), 93-99, 2008.
  • Guo D, Wen R, Liu M, Guo H, Chen J, Weng W. “Facile fabrication of g-C3N4/MIL-53(Al) composite with enhanced photocatalytic activities under visible-light irradiation”. Applied Organometallic Chemistry, 29, 690-697, 2015.
  • Oladipo AA. “MIL-53 (Fe)-based photo-sensitive composite for degradation of organochlorinated herbicide and enhanced reduction of Cr(VI)”. Process Safety and Environmental Protection, 116, 413-423, 2018.
  • Jiang F, Zheng Z, Xu Z, Zheng S, Guo Z, Chen L. “Aqueous Cr(VI) photoreduction catalyzed by TiO2 and sulfated TiO2”. Journal of Hazardous Materials, 134(1-3), 94-103, 2006.
  • Chakrabarti S, Chaudhuri B, Bhattacharjee S, Ray AK, Dutta BK. “Photoreduction of hexavalent chromium in aqueous solution in the presence of zincoxide as semiconductor catalyst”. Chemical Engineering Journal, 153(1-3), 86-93, 2009.
  • Kabra K, Chaudhary R. “Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis”. Industrial & Engineering Chemistry Research, 43(24), 7683-7696, 2004.
  • Cappelletti G, Bianchi CL, Ardizzone S. “Nano-titania assisted photoreduction of Cr(VI): The role of the different TiO2 polymorphs”. Applied Catalysis B: Environmental, 78(3-4), 193-201, 2008.
  • Zhou M, Yu J, Cheng B. “Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method”. Journal of Hazardous Materials, 137(3), 1838-1847, 2006.
  • Ku Y, Jung IL. “Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide”. Water Research, 35, 135-142, 2001.
  • Hoffmann MR, Martin ST, Choi W, Bahnemann D. “Environmental applications of semiconductor photocatalysis”. Chemical Reviews, 95, 69-96, 1995.
  • Grela MA, Loeb B, Restrepo GM, Lagorio MG. Román ES. Los Mecanismos De Destrucción. Ed. Miguel Blesa, Capítulo 5 en: Eliminación de Contaminantes por Fotocatálisis Heterogénea, 8th ed. 125-162, La Plata, Buenos Aires, Argentina, 2004.
  • Grela MA, Colussi AJ. “Kinetics of stochastic charge transfer and recombination events in semiconductor colloids, relevance to photocatalysis efficiency”. The Journal of Physical Chemistry, 100, 18214-18221, 1996.
  • Kamat PV. “Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design”. The Journal of Physical Chemistry Letters, 3, 663-671, 2012.
  • Martin ST, Herrmann H, Hoffmann MR. “Time-resolved microwave conductivity. Part 2.-Quantum-sized TiO2, and the effect of adsorbates and light intensity on charge-carrier dynamics”. Journal of the Chemical Society, Faraday Transactions, 90, 3323-3330, 1994.
  • Meichtry JM, Brusa M, Mailhot G, Grela MA, Litter MI. “Heterogeneous photocatalysis of Cr(VI) in the presence of citric acid over TiO2 particles: relevance of Cr(V) citrate complexes’’. Applied Catalysis B, 71, 101-107, 2007.
  • Meichtry JM, Colbeau-Justin C, Custo G, Litter MI. “TiO2-photocatalytic transformation of Cr(VI) in the presence of EDTA: comparison of different commercial photocatalysts and studies by time resolved microwave conductivity’’. Applied Catalysis B, 144, 189-195, 2014.
  • Montesinos VN, Salou C, Meichtry JM, Colbeau-Justin C. “Litter MI Role of Cr(III) deposition during the photocatalytic transformation of hexavalent chromium and citric acid over commercial TiO2 samples”. Photochemical & Photobiological Sciences, 15, 228-234, 2016.
  • Ananpattarachai J, Kumket P, Tung TV, Kajitvichyanukul P. “Chromium (VI) removal using nano-TiO2/chitosan film in photocatalytic System”. International Journal of Environment and Waste Management, 16, 55-70, 2015.
  • Wang N, Xu Y, Zhu L, Shen X, Tang H. “Reconsideration to the deactivation of TiO2 catalyst during simultaneous photocatalytic reduction of Cr(VI) and oxidation of salicylic acid”. Journal of Photochemistry, 201(2-3), 121-127, 2009.
  • Meichtry JM, Dillert R, Bahnemann D, Litter MI. “Application of the stopped flow technique to the TiO2-heterogeneous photocatalysis of hexavalent chromium in aqueous suspensions: comparison with O2 and H2O2 as electron acceptors”. Langmuir, 31, 6229-6236, 2015.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Doğrusal sismik izolasyon parametrelerinin karga arama algoritması ile optimizasyonu

Ali Erdem ÇERÇEVİK, Özgür AVŞAR

İçme sularından tat ve kokunun giderimi: İstanbul’daki kurulu su arıtma tesislerinde performans değerlendirmesi ve iyileştirilmesi

Malhun FAKIOĞLU, Mahmut Ekrem KARPUZCU, İsmail TORÖZ, Fatih YILDIZ

Polimineral içerikli seramik bir numunenin lüminesans tekniklerle eşdeğer dozunun belirlenmesinde farklı bir yöntemin kullanımı

Mehmet Altay ATLIHAN

Orta ölçekli yerleşime uygunluk planlarının CBS tabanlı analitik hiyerarşi süreci (AHS) kullanılarak hazırlanması: Sivas il merkezi örneği

Şeyma CEYLAN, Işık YILMAZ

Kamyon sürücüsünün dahil olduğu yaralanmalı kazalara etki eden faktörlerin incelenmesi

İbrahim Khalil UMAR, Samir BASHIR

Avrupa Birliği üye ülkeler ve aday olan Türkiye’nin atık indikatörlerine göre kümelenmesinde optimum küme sayısının Silhouette indeksi ile belirlenmesi

Tuğba SÖKÜT AÇAR, Nilgün AYMAN ÖZ

Hava akışlı elektrokoagülasyon reaktörü ile yeraltı sularından arsenik (V) giderimine işletme parametrelerinin etkisi

Ayşegül Yağmur GÖREN, Mehmet Salim ÖNCEL, Mehmet KOBYA

Güneş ışığı altında ?₃?₄/??? − ??(??) kullanılarak ??(??)’nın giderimi

Sevil AKÇAĞLAR

Güneş ışığı altında C₃N₄/DEU-51(Fe) kullanılarak Cr(VI)’nın giderimi

Sevil AKÇAĞLAR

Sulamada nitratla kirlenmiş yeraltısuyu kullanımının modellenmesi

Güray HATİPOĞLU, Zöhre KURT