Farklı inkübasyon koşullarının ve kültür ortamlarının havadaki bakteri ve mantar düzeyine etkisi

Havadaki bakteri ve mantarların örneklenmesinde kullanılan besiyerlerinin seçimi, bakteri ve mantarların nitel ve nicel olarak doğru belirlenmesine etki eden en önemli faktördür. Bu çalışmada, 8 ayrı besiyeri türü kullanılarak İzmir kent merkezi havasında eş zamanlı bakteri ve mantar örnekleri toplanmıştır. Bakteri örnekleri, Columbia blood agar (CBA), Chocolate agar (Choc), Tryptone Glucose Yeast Extract Agar (TGEA), Reasoner's 2A agar (R2A) ve Plate Count Agar (PCA) besiyerleri üzerinde toplanmış ve bu örneklere iki farklı inkübasyon sıcaklığı ve süresi uygulanarak bakterilerin gelişimi 2 gün boyunca 37 ᵒC ve 2 ile 15 gün arasında 50 ᵒC sıcaklıkta takip edilmiştir. Mantar örnekleri için ise Malt-Extract Agar (MEA), Dichloran Rose Bengal Chloramphenicol (DRBC) ve Potato Dextrose Agar (PDA) besiyerleri kullanılmıştır. Bunların tamamı ise 25 ᵒC’de 3-7 gün inkübe edilmiştir. İnkübasyon süreleri sonunda besiyerlerinde üreme gözlenen koloni sayıları ve toplam bakteri ve mantar konsantrasyonları belirlenmiştir. İnkübasyon sıcaklığının PCA hariç (p>0.05) diğer besiyerlerinde toplam bakteri konsantrasyonlarını etkilediği belirlenmiştir. Üç besiyerinde toplanan mantar örneklerinde en çok gözlenen cins Cladosporium sp’dir. Koloni sayıları bakımından besiyerleri PDA>MEA>DRBC şeklinde sıralanmıştır. Mantarlar arasında Chrysosporium sp. cinsinin MEA besiyerinde oluşturduğu koloni sayısı, PDA ve DRBC besiyerlerindekinden yaklaşık 10 kat daha fazladır. Eş zamanlı toplanan örnekler için kullanılan besiyerlerinde maksimum sayıda izole edilen mantar cinsi sıralaması MEA>DRBC>PDA şeklindedir. Bu çalışma, incelediği besiyeri ve inkübasyon koşulları çeşitliliği ile gelecekte kentsel bölgelerde yapılacak bakteri ve mantar örneklemelerine yön göstereceği gibi ekstrem koşullara (50 ᵒC) dayanabilen havadaki dirençli mikroorganizmaların farklı inkübasyon koşulları altında konsantrasyonlarının belirlendiği ilk çalışma niteliğindedir. Ayrıca, bu çalışma son yıllarda Dünya Sağlık Örgütü’nün Antimikrobiyal Direnç tehdidine karşı ülkeleri mücadeleye davet etmesi sebebiyle de önemlidir.

The effect of different incubation conditions and culture media on airbone bacteria and fungi level

The choice of culture media used for airborne bacteria and fungi sampling is the most critical factor that quantitatively affects the determination of bacteria and fungi. In this study, simultaneous bacterial and fungal samples were collected in the air of Izmir city center using eight different media types. Bacterial samples were collected on Columbia blood agar (CBA), Chocolate agar (Choc), Tryptone Glucose Yeast Extract Agar (TGEA), Reasoner's 2A agar (R2A) and Plate Count Agar (PCA) media, and these samples were conditioned at two different incubation temperatures and periods. The growth of bacteria was followed at 37 ᵒC for 2 days and at 50 ᵒC between 2 and 15 days. Malt-Extract Agar (MEA), Dichloran Rose Bengal Chloramphenicol (DRBC) and Potato Dextrose Agar (PDA) media were used for fungi samples. All fungal samples were incubated at 25 ᵒC for 3-7 days. At the end of the incubation period, the number of colonies and total bacteria and fungi concentrations was determined. The incubation temperature was determined to affect the total bacteria concentrations in other media except for PCA (p>0.05). Cladosporium sp was the most frequently observed genus in fungal samples collected on three media. In terms of colony numbers, the media were sorted as PDA>MEA>DRBC. Among the fungi, the number of colonies of Chrysosporium sp. formed in the MEA medium was approximately ten times higher than in PDA and DRBC. The order of the maximum number of isolated fungi in the media used for the samples collected simultaneously is MEA>DRBC>PDA. This research is the first study to determine the concentrations of stable bacteria and fungi that can withstand extreme conditions (50 ᵒC) under different incubation conditions, as it will guide future airborne microorganism sampling in urban areas with the variety of media and incubation conditions it has examined. In addition, this study is also important because the World Health Organization has invited countries to fight against the threat of Antimicrobial Resistance in recent years.

___

  • [1] Xie W, Li Y, Bai W, Hou J, Ma T, Zeng X, Zhang L. “The source and transport of bioaerosols in the air : A review”. Frontiers of Environmental Science & Engineering, 15(3), 1-19, 2021.
  • [2] Jones A M, Harrison R M. “The effects of meteorological factors on atmospheric bioaerosol concentrations-a review”. Science of the Total Environment, 326(1/3), 151-180, 2004.
  • [3] Burrows SM, Butler T, Jöckel P, Tost H, Kerkweg A, Pöschl U, Lawrence MG. “Bacteria in the global atmosphere - part 2: modeling of emissions and transport between different ecosystems”. Atmospheric Chemistry and Physics, 9(23), 9281-929, 2009.
  • [4] Després V, Huffman JA, Burrows SM, Hoose C, Safatov A, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae M, Pöschl U, Jaenicke R. Tellus B. “Primary biological aerosol particles in the atmosphere: a review”. Chemical and Physical Meteorology, 64(1), 1-58, 2012.
  • [5] Bowers RM, Clements N, Emerson J B, Wiedinmyer C, Hannigan MP, Fierer N. “Seasonal variability in bacterial and fungal diversity of the near- surface atmosphere”. Environmental Science & Technology, 47(21), 12097-12106, 2013.
  • [6] Amato P, Joly M, Schaupp C, Attard E, Mohler O, Morris C E, Brunet Y, Delort AM. “Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber”. Atmospheric Chemistry and Physics, 15(11), 6455-6465, 2015.
  • [7] Fröhlich-Nowoisky J, Kampf C J, Weber B, Huffman J A, Pöhlker C, Andreae MO, Lang-Yona N, Burrows S M, Gunthe SS, Elbert W, Su H, Hoor P, Thines E, Hoffmann T, Després VR, Pöschl U. “Bioaerosols in the Earth system: Climate, health, and ecosystem interactions”. Atmospheric Research, 182, 346-376, 2016.
  • [8] Kim KH, Kabir E, Jahan SA. “Airborne bioaerosols and their impact on human health”. Journal of Environmental Sciences-China, 67, 23-35, 2018.
  • [9] Xie Z, Fan C, Lu R, Liu P, Wang B, Du S, Jin C, Deng S, Li Y. “Characteristics of ambient bioaerosols during haze episodes in China: A review”. Environmental Pollution, 243(Pt B), 1930-1942, 2018.
  • [10] Mentese S. Investigation of Indoor air Quality and Determination of Their Sources. PhD Thesis, Dissertation, Hacettepe University, Ankara, Turkey, 2009.
  • [11] Mentese S, Rad AY, Arısoy M, Güllü G. “Seasonal and spatial variations of bioaerosols in indoor urban environments, Ankara, Turkey”. Indoor and Built Environment, 21(6), 797-810, 2012.
  • [12] Mentese S, Mirici NA, Otkun MT, Bakar C, Palaz E, Tasdibi D, Cevizci S, Cotuker O. “Association between respiratory health and indoor air pollution exposure in Canakkale, Turkey”. Building and Environment, 93, 72-83, 2015.
  • [13] Mentese S, Tasdibi D. “Airborne bacteria levels in indoor urban environments: the influence of season and prevalence of sick building syndrome (SBS)”. Indoor Built Environment, 25(3), 563-580, 2016.
  • [14] Mentese S, Mirici NA, Elbir T, Palaz E, Mumcuoğlu DT, Cotuker O, Bakar C, Oymak S, Otkun MT. “A long-term multi-parametric monitoring study: Indoor air quality (IAQ) and the sources of the pollutants, prevalence of sick building syndrome (SBS) symptoms, and respiratory health indicators”. Atmospheric Pollution Research, 11(12), 2270-2281, 2020.
  • [15] Mouli P, Mohan S, Reddy S. “Assessment of microbial(bacteria) Concentrations of ambient air at semiarid urban region: Influence of meteorological factors”. Applied Ecology and Environmental Research, 3(2), 139-149, 2005.
  • [16] Fang Z, Ouyang Z, Zheng H, Wang, X, Hu L. “Culturable airborne bacteria in outdoor environments in Beijing, China”. Microbial Ecology, 54(3), 487-496, 2007.
  • [17] Goudarzi G, Shirmardi M, Khodarahmi, F, HashemiShahraki A, Alavi N, Ankali KA, Marzouni MB. “Particulate matter and bacteria characteristics of the Middle East Dust (MED) storms over Ahvaz, Iran”. Aerobiologia, 30(4), 345-356, 2014.
  • [18] Tarigan YG, Chen RY, Lin, HC, Jung, CY, Kallawicha K, Chang TP, Chao HJ. “Fungal bioaerosol exposure and its effects on the health of mushroom and vegetable farm workers in Taiwan”. Aerosol and Air Quality Research, 17(8), 2064-2075, 2017.
  • [19] Thilsing, T, Madsen, AM, Basinas I, Schlünssen V, Tendal K, Bælum J. “Dust, endotoxin, fungi, and bacteria exposure as determined by work task, season, and type of plant in a flower greenhouse”. Annals of Occupational Hygiene, 59(2), 142-157, 2015.
  • [20] Soleimani Z, Goudarzi G, Sorooshian A, Marzouni MB, Maleki H. “Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol”. Atmospheric Environment, 138, 135-143, 2016.
  • [21] Nevalainen A, T ̈aubel M, Hyv ̈arinen A. “Indoor fungi: companions and contaminants”. Indoor Air, 25, 125-156, 2015.
  • [22] Stamatelopoulou A, Pyrri I, Asimakopoulos DN, Maggos T. “Indoor air quality and dustborne biocontaminants in bedrooms of toddlers in Athens, Greece”. Building and Environment, 173, 1-10, 2020.
  • [23] Hai VD, Hoang SMT, Hung NTQ, Ky NM, Gwi-Nam B, Ki-Hong P, Nguyen DD. “Characteristics of airborne bacteria and fungi in the atmosphere in Ho Chi Minh City, Vietnam-A case study over three years”. International Biodeterioration & Biodegradation, 145, 1-9, 2019.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ