Emülsiyon elektro lif çekim yöntemi ile uçucu yağ esaslı kompozit nanoliflerin üretimi

Bu çalışmada, su içinde yağ emülsiyon elektro lif çekimi ilepolivinilpirolidon (PVP)/jelatin (GEL)/lavanta uçucu yağ (LEO) esaslınanolif üretilmesi amaçlanmıştır. Öncelikle; polimer çözeltiözelliklerinin ölçümü ve daha sonra nanolif üretim optimizasyonu venanolifli ağ yapının karakterizasyonu gerçekleştirilmiştir. PVPçözeltisine jelatin ilavesi ile viskozite artar iken, iletkenlik ve yüzeygerilimi azalmaktadır. Nano ağ kalitesi, lif çapı, çap üniformitesi vejelatin içeriği bakımından PVP/GEL (50/50) optimum numune olarakbelirlenmiştir. Çeşitli konsantrasyonlarda LEO içeren PVP/GEL(50/50)’den nanolif üretimine devam edilmiştir. FT-IR sonuçları,nanoliflerin kimyasal yapısında LEO, PVP ve jelatin varlığınıdoğrulamıştır. Saf PVP ve %8 LEO içeren PVP/GEL (50/50) hariç,genellikle oldukça ince ve üniform nanolifler elde edilmiştir. En incelifler PVP/GEL (100/0) (183 nm) çözeltisinden ve en üniform liflerPVP/GEL (50/50) (1.04 lif çapı üniformite katsayısı) çözeltisinden eldeedilmiştir. Tüm nanolif numunelerinin histogramında tek tepeli dağılımeğrileri elde edilmiştir. Jelatin ilavesi, çözelti özelliklerini ve ortalama lifçapını istatistiksel olarak etkilemiştir fakat LEO ilavesi lif özelliklerinietkilememiştir.

Production of essential oil-based composite nanofibers by emulsionelectrospinning

Abstract ÖzThis study aimed to produce polyvinylpyrrolidone (PVP)/gelatin (GEL)/lavender essential oil (LEO)-based nanofibers by means of oil-inwater emulsion electrospinning. Firstly, the polymer solution properties were measured, and then optimization of nanofiber production and characterization of the nanofibrous web were carried out. As gelatin was added to the PVP solution, viscosity was found to increase while surface tension and conductivity decreased. PVP/GEL (50/50) was determined to be the optimum sample in terms of nanoweb quality, fiber diameter, diameter uniformity, and gelatin content. Nanofiber production proceeded with PVP/GEL (50/50) and various concentrations of LEO. FT-IR results confirmed that LEO, PVP, and gelatin were incorporated in the chemical structure of the nanofibers. Generally, ultra-fine and uniform nanofibers were obtained, except when using pure PVP or PVP/GEL (50/50) including 8 wt % LEO. The finest fibers were obtained from PVP/GEL (100/0) (183 nm), and the most uniform fibers were obtained from PVP/GEL (50/50) (fiber diameter uniformity coefficient of 1.04). All nanofiber samples displayed unimodal distribution curves of histograms. While the addition of gelatin affected solution properties and average fiber diameter, the addition of LEO did not affect fiber properties.

___

  • [1] Agarwal S, Greine A. “On the way to clean and safe electrospinning-green electrospinning: emulsion and suspension electrospinning”. Polymers for Advanced Technologies, 22, 372-378, 2011.
  • [2] Hu J, Wei J, Liu W, Chen Y. “Preparation and characterization of electrospun PLGA/gelatin nanofibers as a drug delivery system by emulsion electrospinning”. Journal of Biomaterials Science, Polymer Edition, 24(8), 972-985, 2013.
  • [3] Briggs T, Arinzeh TL. “Examining the formulation of emulsion electrospinning for improving the release of bioactive proteins from electrospun fibers”. Journal of Biomedical Materials Research Part A, 102, 674-684, 2014.
  • [4] Kesici Güler H, Cengiz Çallıoğlu F, Sesli Çetin E. “Antibacterial PVP/cinnamon essential oil nanofibers by emulsion electrospinning”. The Journal of the Textile Institute, 110(2), 302-310, 2019.
  • [5] Padil VVT, Wacławek S, Černík M. “Green Synthesis: Nanoparticles and Nanofibres Based on Tree Gums for Environmental Applications”. Ecological Chemistry and Engineering S, 23(4), 533-557, 2016.
  • [6] Castilla-Casadiego DA, “’Green’ electrospinning of a collagen/hydroxyapatite composite nanofibrous scaffold”. MRS Communications, 6(4), 402-407, 2016.
  • [7] Burke L, Mortimer CJ, Curtis DJ, Lewis AR, Williams R, Hawkins K, Wright CJ. “In-situ synthesis of magnetic ironoxide nanoparticle-nanofibre composites using electrospinning”. Materials Science & Engineering. C, Materials for Biological Applications, 70(1), 512-519, 2017.
  • [8] Han D, Sasaki M, Yoshino H, Kofuji S, Sasaki AT, Steckl AJ. “In-vitro evaluation of MPA-loaded electrospun coaxial fiber membranes for local treatment of glioblastoma tumor cells”. Journal of Drug Delivery Science and Technology, 40, 45-50, 2017.
  • [9] Gharib R, Najjar A, Auezova L, Charcosset C, Greige-Gerges H, “Interaction of Selected Phenylpropenes with Dipalmitoylphosphatidylcholine Membrane and Their Relevance to Antibacterial Activity”. The Journal of Membrane Biology, 250(3), 259-271, 2017.
  • [10] Wang L, Chang MW, Ahmad Z, Zheng H, Li JS. “Mass and controlled fabrication of aligned PVP fibers for matrix type antibiotic drug delivery systems”. Chemical Engineering Journal, 307, 661-669, 2017.
  • [11] Yu DG, Wang X, Li XY, Chian W, Li Y, Liao YZ. “Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers”. Acta Biomaterialia, 9(3), 5665-5672, 2013.
  • [12] Jiang YN, Mo HY, Yu DG. “Electrospun drug-loaded core-sheath PVP/zein nanofibers for biphasic drug release”. International Journal of Pharmaceutics, 438(1-2), 232-239, 2012.
  • [13] Maslakci NN, Ulusoy S, Uygun E, Çevikbaş H, Oksuz L, Can HK, Oksuz AU. “Ibuprofen and acetylsalicylic acid loaded electrospun PVP-dextran nanofiber mats for biomedical applications”. Polymer Bulletin, 74(8), 3283-3299, 2017.
  • [14] Rajasekhar T, Babu PV, Gopinath J, Sainath AVS, Reddy AVR. “Amphiphilic ABA-type triblock copolymers for the development of high-performance poly (vinylidene fluoride)/poly (vinyl pyrrolidone) blend ultrafiltration membranes for oil separation”. Journal of Applied Polymer Science, 134(36), 1-13, 2017.
  • [15] Yu DG, Wang X, Li XY, Chian W, Li Y, Liao YZ. “Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers”. Acta Biomaterialia, 9(3), 5665-5672, 2013.
  • [16] Dhandayuthapani B, Krishnan UM, Sethuraman S. “Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering”. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 94(1), 264-272, 2010.
  • [17] Huang ZM, Zhang YZ, Ramakrishna S, Lim CT. “Electrospinning and mechanical characterization of gelatin nanofibers”. Polymer, 45, 5361-5368, 2004.
  • [18] Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. “Characterization of gelatin nanofiber prepared from gelatin-formic acid solution”. Polymer, 46(14), 5094-5102, 2005.
  • [19] Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. “Crosslinking of the electrospun gelatin nanofibers”. Polymer, 47(8), 2911-2917, 2006.
  • [20] Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. “Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering”. Materials Science and Engineering: C, 30(8), 1204-1210, 2010.
  • [21] Nguyen TH, Lee BT. “Fabrication and characterization of cross-linked gelatin electro-spun nano-fibers”. Journal of Biomedical Science and Engineering, 3(12), 1117-1121, 2010.
  • [22] Aduba Jr DC, Hammer JA, Yuan Q, Yeudall WA, Bowlin GL, Yang H. “Semi-interpenetrating network (sIPN) gelatin nanofiber scaffolds for oral mucosal drug delivery”. Acta biomaterialia, 9(5), 6576-6584, 2013.
  • [23] Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. “Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering”. Biomaterials, 29(34), 4532-4539, 2008.
  • [24] Kim MS, Jun I, Shin YM, Jang W, Kim SI, Shin H. “The development of genipin-crosslinked poly (caprolactone)(PCL)/gelatin nanofibers for tissue engineering applications”. Macromolecular Bioscience, 10(1), 91-100, 2010.
  • [25] Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI. “Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications”. Biomaterials, 27(13), 2705-2715, 2006.
  • [26] Zhuang X, Cheng B, Kang W, Xu X. “Electrospun chitosan/gelatin nanofibers containing silver nanoparticles”. Carbohydrate Polymers, 82(2), 524-527, 2010.
  • [27] Meng ZX, Xu XX, Zheng W, Zhou HM, Li L, Zheng YF, Lou X. “Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system”. Colloids and Surfaces B: Biointerfaces, 84(1), 97-102, 2011.
  • [28] Meng ZX, Li HF, Sun ZZ, Zheng W, Zheng YF. “Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering”. Materials Science and Engineering: C, 33(2), 699-706, 2013.
  • [29] Yin-Guibo, Zhang-Youzhu, Bao-Weiwei, Wu-Jialin, De-bing S, Zhi-hui D, Wei-guo F. “Study on the properties of the electrospun silk fibroin/gelatin blend nanofibers for scaffolds”. Journal of Applied Polymer Science, 111(3), 1471-1477, 2009.
  • [30] Bakkali F, Averbeck S, Averbeck D, Idaomar M. “Biological effects of essential oils-a review”. Food and Chemical Toxicology, 46(2), 446-475, 2008.
  • [31] Hammer KA, Carson C, Riley T. “Antimicrobial activity of essential oils and other plant extracts”. Journal of Applied Microbiology, 86, 985-990, 1999.
  • [32] Zhang H, Dudley EG, Davidson PM, Harte F. “Critical concentration of lecithin enhances the antimicrobial activity of eugenol against Escherichia coli”. Applied and Environmental Microbiology, 83(8), e03467-16, 2017.
  • [33] Cavanagh H, Wilkinson J. “Biological activities of lavender essential oil”, Phytotherapy research, 16, 301-308, 2002.
  • [34] Hui L, He L, Huan L, Xiaolan L, Aiguo Z. “Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitis-related bacteria”, African Journal of Microbiology Research, 4(4), 309-313, 2010.
  • [35] Lis-Balchin M, Hart S. “Studies on the mode of action of the essential oil of LavenderLavandula angustifolia P. Miller.”. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 13(6), 540-542, 1999.
  • [36] Kayaci F, Ertas Y, Uyar T. “Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers”. Journal of agricultural and food chemistry, 61(34), 8156-8165, 2013.
  • [37] Kim JH, Lee H, Jatoi AW, Im SS, Lee JS, Kim IS. “Juniperus chinensis extracts loaded PVA nanofiber: Enhanced antibacterial activity”. Materials Letters, 181, 367-370, 2016.
  • [38] Mori CLSDO, Passos NAD, Oliveira JE, Altoé TF, Mori FA, Mattoso LHC, Tonoli GHD. “Nanostructured polylactic acid/candeia essential oil mats obtained by electrospinning”. Journal of Nanomaterials, 16(1), 1-9, 2015.
  • [39] Chem 21 Guides and Metrics: Reagent Guides. “Pfizer and ACS GCI Pharmaceutical Roundtable selection guides”. Green Solvents, http://learning.chem21.eu/methods-offacilitating-change/reagent-guides/pfizer/ (01.07.2019).
  • [40] Cengiz F, Jirsak O. “The effect of salt on the roller electrospinning of polyurethane nanofibers”. Fibers Polymers, 10(2), 177-184, 2009.
  • [41] Song JH, Kim HE, Kim HW. “Production of electrospun gelatin nanofiber by water-based co-solvent approach”. Journal of Materials Science: Materials in Medicine, 19(1), 95-102, 2008.
  • [42] Okutan N, Terzi P, Altay F. “Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers”. Food Hydrocolloids, 39, 19-26, 2014.
  • [43] Tan SH, Inai R, Kotaki M, Ramakrishna S. “Systematic parameter study for ultra-fine fiber fabrication via electrospinning process”. Polymer, 46(16), 6128-6134, 2005.
  • [44] Ramakrishna S, Fujihara K, Teo W, Lim T, Ma Z. An Introduction to Electrospinning and Nanofibers. 1st ed. Singapore, World Scientific, 2005.