Piroliz gazından karışık kültür kullanılarak sentezgaz fermentasyonu ile biyoetanol üretimi: Isıl ön işlem etkisi

Son yıllarda hava kirliliğinin insan sağlığını ciddi boyutlarda etkileyecek düzeylere gelmesi ve yenilebilir enerji kaynaklarına olan gereksinimin artmasına sentezgazdan biyoetanol üretimi ortak bir çözüm sunmaktadır. Sentezgaz hava kirliliği oluşturan CO, CO2, N2, H2, NOx gibi gazların bileşiminden oluşur ve bazı Clostiridium türlerinin bu gazları metabolize ederek biyoetanol üretiminde kullanılabilir. Biyoetanol, benzinle karıştırılarak doğrudan kullanılabilmesi avantajından dolayı yenilenebilir enerji kaynakları arasında oldukça önemli bir biyoyakıttır. Biyoetanol üretiminde atık ve lignoselülozik hammaddelerin kullanılmasında uygulanan pahalı ön işlem yöntemlerine göre piroliz işlemi önemli bir alternatiftir. Bu çalışma kapsamında kullanılan biyoetanol üretiminde piroliz işlemi ile lignoselülozik atıkların biyokömüre dönüştürülmesi ve yan ürün olan atık gazın toplanarak biyoetanol üretiminde kullanılması iki faklı enerji kaynağının aynı sistemle üretilmesi açısından yenilikçi ve enerji verimli bir yaklaşımdır. Saf Clostiridium türleri ile piroliz gazından etanol üretiminde karışık kültür kullanılması da maliyetlerin düşürülmesi açısından oldukça önemlidir. Bu çalışma kapsamında biyokömür eldesi amacıyla meyve sebze atıklarının pirolizi sırasında açığa çıkan atık gazdan ısıl ön işlem uygulanmış karışık kültür kullanılarak biyoetanol üretimi gerçekleştirilmiştir. Karışık kültürde ısıl ön işlemin olumlu etkisi gözlenirken reaktörlere beslenecek piroliz gazı miktarı optimize edilmiş, en yüksek etanol üretimi 5 g/l olarak 5 ve 10 mL piroliz gazı beslemesinde gözlenmiştir.

___

  • [1] Dürre P, Eikmanns BJ. “C1-carbon sources for chemical and fuel production by microbial gas fermentation”. Current Opinion in Biotechnology, 35, 63-72, 2015.
  • [2] Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL. “Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol”. Bioresource Technology, 151, 69-77, 2014.
  • [3] Phillips JR, Huhnke RL, Atiyeh HK. “Syngas fermentation: A microbial conversion process of gaseous substrates to various products”. Fermentation, 3(28), 1-26, 2017.
  • [4] Advanced Biofuels USA “Syngas Fermentation- The. Third Pathway for Cellulosic Ethanol”. Advanced Biofuels USA.org. https://advancedbiofuelsusa.info/tag/syngas-fermentation/ (07.08.2019).
  • [5] Adıgüzel OA. “Lignoselülozik materyallerden biyoetanol üretimi için kullanılan ön-muamele ve hidroliz yöntemleri”. Sakarya University Journal of Science, 17(3), 381-397, 2013.
  • [6] Kumar R, Wyman CE. "Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies" Biotechnology Progress, 25(2), 302-314, 2009.
  • [7] Rocha MVP, Rodrigues YHS, De MacEdo GR, Gonçalves LRB. "Enzymatic hydrolysis and fermentation of pretreated cashew apple bagasse with alkali and diluted sulfuric acid for bioethanol production" Applied Biochemistry and Biotechnology, 155(1-3), 104-114, 2009.
  • [8] Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR. "Optimization of pH controlled liquid hot water pretreatment of corn stover" Bioresource Technology 96 (18), 1986-1993. 2015.
  • [9] Devarapalli M, Atiyeh HK. "A review of conversion processes for bioethanol production with a focus on syngas fermentation". Biofuel Research Journal, 2, 268-280,2015.
  • [10] Uddin MN, Techato K, Taweekun J,Rahman M. “An overview of recent developments in biomass pyrolysis technologies”. Energies, 11(11), 1-24, 2018.
  • [11] Liu W, Jiang H, Yu H. “Development of biochar-based functional materials: toward a sustainable platform carbon material”. Chemical Reviews, 115, 12251-12285, 2015.
  • [12] Duman G, Pala M, Ucar S, Yanik J. “Two-step pyrolysis of safflower oil cake”. Journal of Analytical amd Applied Pyrolysis, 103, 352-361, 2013.
  • [13] Zheng YJ. Zhao, F. Xu, Y. Li. “Pretreatment of lignocellulosic biomass for enhanced biogas production”. Progress in Energy and Combustion Science, 42(1), 35-53, 2014.
  • [14] Lennartsson PR, Erlandsson P, Taherzadeh MJ. “Integration of the first and second generation bioethanol processes and the importance of by-products”. Bioresource Technology, 165, 3-8, 2014.
  • [15] Jack J, Lo J, Maness PC, Ren RJ. "Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas" Biomass and Bioenergy, 124, 95-101,2019.
  • [16] Oelgeschläger E, Rother M. “Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea”. Archives of Microbiology, 190(3), 257-269, 2008.
  • [17] Abubackar HN, Veiga MC, Kennes C. “Biological conversion of carbon monoxide: Rich syngas or waste gases to bioethanol”. Biofuels, Bioproducts and Biorefining, 5(1), 93-114, 2011.
  • [18] Abubackar HN, Veiga MC, Kennes C. “Biological conversion of carbon monoxide to ethanol: Effect of pH, gas pressure, reducing agent and yeast extract”. Bioresource Technology, 114, 518-522, 2012.
  • [19] Abubackar HN, Veiga MC, Kennes C. “Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid”. Bioresource Technology, 186, 122-127, 2015.
  • [20] Agilent Technologies. “Parallel GC for Complete Refinery Gas Analysis” https://www.agilent.com/cs/library/applications/5989-7437EN.pdf (03.11.2019).
  • [21] Mohan D, Pittman CU, Steele PH. “Pyrolysis of wood/biomass for bio-oil: A critical review”. Energy and Fuels, 4, 848-889, 2006.
  • [22] Biswas B, Pandey N, Bisht Y, Singh R, Kumar J, Bhaskar T. “Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk”. Bioresource Technology, 237, 57-63, 2017.
  • [23] Neves D, Thunman H, Matos A, Tarelho A, Gómez-barea A. “Characterization and prediction of biomass pyrolysis products”. Progress in Energy Combustion Science, 37(5), 611-630, 2011.
  • [24] Widyawati M, Church TL, Florin NH, Harris AT. “Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide”. International Journal of Hydrogen Energy, 36(8), 4800-4813, 2011.
  • [25] Abubackar HN, Keskin T, Arslan K, Eroglu D, Ozdemir G, Azbar N. “Effects of size and autoclavation of fruit and vegetable wastes on biohydrogen production by dark dry anaerobic fermentation under mesophilic condition”. International Journal of Hydrogen Energy, 44(33), 17767-17780, 2019.
  • [26] Fernández-Naveira A, Abubackar HN, Veiga MC, Kennes C. “Carbon monoxide bioconversion to butanol-ethanol by Clostridium carboxidivorans: kinetics and toxicity of alcohols”. Applied Microbiology and Biotechnology, 100(9), 4231-4240, 2016
  • [27] Van Groenestijn JW, Abubackar HN, Veiga MC, Kennes C. Bioethanol. Editors: Kennes C, Veiga MC. Air Pollution Prevention and Control: Bioreactors and Bioenergy, 431-456, West Sussex, United Kingdom, Wiley, 2013.
  • [28] Keskin T, Arslan K, Nalakath Abubackar H, Azbar N. Biohydrogen Production from Solid Wastes. Editors: Pandey A, Mohan SV, Hallenbeck P, Larroche C. Biyohydrogen 2-Biomass, Biofuels, Biochemicals, 2nd Edition, 321-346, Cambridge, United States. Elsevier, 2019.
  • [29] Orgill JJ, Atiyeh HK, Devarapalli M, Phillips JR, Lewis RS, Huhnke RL. “A comparison of mass transfer coefficients between trickle-bed, Hollow fiber membrane and stirred tank reactors”. Bioresource Technology, 133, 340-346, 2013.
  • [30] Sierra R, Smith A, Granda C, Holtzapple MT. “Producing fuels and chemicals from lignocellulosic biomass”. Chemical Engineering Progress, 104(8), 10-18, 2008.
  • [31] Shen S, Gu Y, Chai C, Jiang W, Zhuang Y, Wang Y. “Enhanced alcohol titre and ratio in carbon monoxide-rich off-gas fermentation of Clostridium carboxidivorans through combination of trace metals optimization with variable-temperature cultivation”. Bioresource Technology, 239, 236-343, 2017.
  • [32] Cheng C, Bao T, Yang ST. “Engineering Clostridium for improved solvent production: recent progress and perspective”. Applied Microbiology and Biotechnology, 103(14), 5549-5566, 2019.
  • [33] Martin ME, Richter H, Saha S, Angenent LT. “Traits of selected Clostridium strains for syngas fermentation to ethanol”. Biotechnology and Bioengineering, 113(3), 531-539, 2016.
  • [34] Shen Y, Brown R, Wen Z. “Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor”. Applied Energy, 136, 68-76, 2014.
  • [35] Shen Y, Brown R, Wen Z. “Syngas fermentation of Clostridium carboxidivorans P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance”. Biochemical Engineering Journal, 85, 21-29, 2014.
  • [36] Chakraborty S, Rene ER, Lens PNL, Veiga MC, Kennes C. “Enrichment of a solventogenic anaerobic sludge converting carbon monoxide and syngas into acids and alcohols”. Bioresource Technology, 272, 130-136, 2019.
  • [37] Abubackar HN, Bengelsdorf FR, Dürre P, Veiga MC, Kennes C. “Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia”. Applied Energy, 169, 210-217, 2016.
  • [38] Asimakopoulos K, Gavala HN, Skiadas IV. “Reactor systems for syngas fermentation processes: A review”. Chemical Engineering Journal, 348, 732-744, 2018.
  • [39] Bredwell MD, Worden RM. “Mass-transfer properties of microbubbles. 1.Experimental studies”. Biotechnology Progress, 14, 31-38, 1998.
  • [40] Klasson KT, Ackerson MD. Clausen EC, Gaddy JL. “Bioreactors for synthesis gas fermentations”. Resource Conservation and Recycling, 5(2), 145-165, 2003.
  • [41] Xie BT, Liu ZY, Tian L, Li FL, Chen XH. “Physiological response of Clostridium ljungdahlii DSM 13528 of ethanol production under different fermentation conditions”. Bioresource Technology, 177, 302-307, 2015.
  • [42] Jack J, Lo J, Maness PC, Ren ZJ. “Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas”. Biomass and Bioenergy, 124, 95-101, 2019.