Süreç Odaklı Rehberli Sorgulamayla Öğrenmenin Motivasyon ve Mantıksal Düşünme Becerilerine Etkisi

Bu çalışmada yarı-deneysel desenlerden eşitlenmemiş kontrol gruplu desen kullanılarak, Süreç Odaklı Rehberli Sorgulamayla Öğrenmenin (POGIL®) yedinci sınıf öğrencilerinin fen bilimleri dersindeki motivasyonlarına ve mantıksal düşünme becerilerine etkisi araştırılmıştır. Araştırmaya kontrol grubundan 28 ve deney grubundan 27 olmak üzere toplam 55 öğrenci katılmıştır. Katılımcılar uygun örnekleme yöntemi ile belirlenmiştir. Kontrol grubunda Saf Madde ve Karışımlar ünitesi, öğrenciler arası etkileşimin sınırlı olduğu süregelen öğretim yöntemi ile öğretilirken deney grubunda POGIL ile öğretilmiştir. Katılımcıların mantıksal düşünme becerilerini ölçmek için Mantıksal Düşünme Grup Testi ve fen bilimleri dersine yönelik motivasyonlarını ölçmede ise Öğrenmede Güdüsel Stratejiler Ölçeği’nin Motivasyon Ölçeği ön test ve son test olarak uygulanmıştır. Bulgulara göre uygulamanın sonunda POGIL grubunun, süregelen öğretim yöntemlerinin uygulandığı gruba kıyasla motivasyon ve mantıksal düşünme becerisi puanları anlamlı düzeyde daha yüksektir. Sonuç olarak POGIL’in Saf Madde ve Karışımlar ünitesini öğretmede ortaokul öğrencilerinin motivasyon ve mantıksal düşünme becerilerini geliştiren etkili bir strateji olduğu söylenebilir.

The Effect of Process-Oriented Guided Inquiry Learning on Motivation and Logical Thinking Skills

This study employed a non-equivalent control group design to investigate the effect of Process Oriented Guided Inquiry Learning (POGIL®) on seventh grade students' motivation and logical thinking skills in a science course. There were 55 students in total, 28 students in the control group and 27 students in the experimental group. A convenient sampling method was used to select the participants. The Pure Substances and Mixtures unit was taught to the students in the control group by using the ongoing teaching method with limited interaction while POGIL was implemented in the experimental group. Group Assessment of Logical Thinking (GALT) was administered to assess the participants' logical thinking skills and the Motivation Scale of the Motivational Strategies Scale in Learning was used as the pre-test and post-test to assess their motivation for the science course. According to the results, the POGIL group had significantly higher motivation and logical thinking skills scores than the control group that used the ongoing teaching methods. Thus, it can be claimed that POGIL is an effective strategy to improve middle school students' motivation and logical thinking skills for teaching the Pure Substances and Mixtures unit.

___

  • Abdullah, S., & Shariff, A. (2008). The effects of inquiry-based computer simulation with cooperative learning on scientific thinking and conceptual understanding of gas laws. Eurasia Journal of Mathematics, Science & Technology Education, 4(4), 387–398.
  • Abraham, M. R. (2005). Inquiry and the learning cycle approach. In Chemists' guide to effective teaching, eds. N. J. Pienta, M. M. Cooper, and T. J. Greenbowe. Upper Saddle River, NJ: Prentice Hall.
  • American Chemical Society [ACS]. (2022). Middle school chemistry: Lesson plans. [Available online at https://www.middleschoolchemistry.com/lessonplans/], Retrieved on January 10, 2019.
  • Andriani, S., Nurlaelah, E., & Yulianti, K. (2019). The effect of process oriented guided inquiry learning (POGIL) model toward students’ logical thinking ability in mathematics. Journal of Physics: Conference Series, 1157(4), 1-5.
  • Aksu, M., Berberoğlu, G., & Paykoç, F. (1990). Can the GALT test be used in a different cultural setting? (Research Report). Ankara: METU.
  • Albanese, M. A., & Mitchell, S. (1993). Problem-based learning. A review of literature on its outcomes and implementation issues. Academic Medicine, 68(1), 52–81.
  • Amiot, L.M. (2007). The particulate nature of polyatomic ions: An exploratory study using molecular drawing software. (Unpublished doctoral dissertation). Louisiana State University and Agricultural and Mechanical College.
  • Artuz, J. K. A., & Roble, D. B. (2021). Developing students’ critical thinking skills in mathematics using Online-Process Oriented Guided Inquiry Learning (O-POGIL). American Journal of Educational Research, 9(7), 404–409.
  • Ashman, A., & Gillies, R. (Eds.). (2003). Cooperative learning: The social and intellectual outcomes of learning in groups. London and NewYork: Routledge.
  • Atila, M. E., & Sözbilir, M. (2016). Fen ve teknoloji dersi öğretim programındaki yapılandırmacılığa dayalı öğelerin öğretmenler tarafından uygulanışı: Nitel bir çalışma. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 18(2), 1418-1457.
  • Becker, N., Stanford, C., Towns, M., & Cole, R. (2015). Translating across macroscopic, submicroscopic, and symbolic levels: the role of instructor facilitation in an inquiry-oriented physical chemistry class. Chemistry Education Research and Practice, 16(4), 769–785.
  • Bransford, J., Brown, A. L., & Cocking, R. E. (1999). How people learn: Brain, mind, experience, and school. Washington, DC: National Academy Press.
  • Bunce, D. M., & Hutchinson, K. D. (1993). The use of the GALT (Group Assessment of Logical Thinking) as a predictor of academic success in college chemistry. Journal of Chemical Education, 70(3), 183-187.
  • Bümen, N. T., Çakar, E., & Yıldız, D. G. (2014). Türkiye’de öğretim programına bağlılık ve bağlılığı etkileyen etkenler. Kuram ve Uygulamada Eğitim Bilimleri, 14(1), 203-228.
  • Bümen, N.T., & Yazıcılar, Ü. (2020). Öğretmenlerin öğretim programı uyarlamaları üzerine bir durum çalışması: devlet ve özel lise farklılıkları. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 40(1), 183-224.
  • Değirmenci, A., & Doğru, M. (2019). İlkokul 4. sınıf fen bilimleri dersi öğretim programı maddeyi tanıyalım ünitesi kazanımlarının gerçekleşme düzeyinin değerlendirilmesi. Gazi Eğitim Bilimleri Dergisi, 5(1), 102-121.
  • Demirkazan, Y. K., Kalik, G. & Öcal, K. (2018). Ortaokul ve imam hatip ortaokulu fen bilimleri 7 ders kitabı. Milli Eğitim Bakanlığı Yayınları.
  • De Gale, S., & Boisselle, L. N. (2015). The Effect of POGIL on Academic Performance and Academic Confidence. Science Education International, 26(1), 56-79.
  • De Jong, T., & Van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179–201.
  • Doğan, Y. (2010). Fen Ve Teknoloji Dersi Programının Uygulanması Sürecinde Karşılaşılan Sorunlar. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 7(1), 86-106.
  • Douglas, E. (2014). Introduction to materials science and engineering: A guided inquiry. Upper Saddle River, NJ: Pearson Higher Education.
  • Geiger, M. (2010). Implementing POGIL in allied health chemistry courses: Insights from process education. International Journal of Process Education, 2(1), 19-34.
  • Glazer, N. (2015). Student perceptions of learning data-creation and data-analysis skills in an introductory college-level chemistry course. Chemistry Education Research and Practice, 16(2), 338–345.
  • Gülmez Güngörmez, H., & Akgün, A. (2020). Kavram yanılgılarının giderilmesinde süreç odaklı rehberli sorgulayıcı öğrenme ortamının etkisi: Kuvvet ve enerji ünitesi örneği. Journal of History School, 49, 4118-4147.
  • Ham, Y., & Myers, B. (2019). Supporting guided inquiry with cooperative learning in computer organization. SIGCSE 2019 - Proceedings of the 50th ACM Technical Symposium on Computer Science Education, 273–279.
  • Hanib, M. T., Suhadi, S., & Indriwati, S. E. (2017). Science processing skill improvement through POGIL. Jurnal Pendidikan Sains, 5(4), 118–122.
  • Hanson, D. M. (2006). Instructor's guide to process-oriented guided-inquiry learning. Lisle, IL: Pacific Crest.
  • Hanson D., (2011). General chemistry: Guided explorations. (2nd ed.). CA, USA: Brooks/Cole.
  • Harrison, A. G., & Treagust, D. F. (2002). The particulate nature of matter: Challenges in understanding the submicroscopic world. In Chemical education: Towards research-based practice (pp. 189-212). Springer, Dordrecht.
  • Hazır Bıkmaz, F., (2006). Yeni ilköğretim programları ve öğretmenler. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 39(1), 97-116.
  • Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99–107.
  • Hogan, K., & Maglienti, M. (2001).Comparing the epistemological underpinnings of students’and scientists’reasoning about conclusions. Journal of Research in Science Teaching, 38(6), 663–687.
  • Irwanto, Saputro, A. D., Rohaeti, E., & Prodjosantoso, A. K. (2018). Promoting critical thinking and problem solving skills of preservice elementary teachers through Process-Oriented Guided-Inquiry Learning (POGIL). International Journal of Instruction, 11(4), 777–794.
  • Jasperson, J. (2013). The effects of guided inquiry on students' understanding of physics concepts in the middle school science classroom. Master’s thesis, Montana State University, Bozeman, Montana.
  • Karplus, R. (1977). Science teaching and the development of reasoning. Journal of Research in Science Teaching, 14 (2), 169-175.
  • Kırık, Ö. T., & Boz, Y. (2012). Cooperative learning instruction for conceptual change in the concepts of chemical kinetics. Chemistry Education Research and Practice, 13(3), 221-236.
  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.
  • Koballa, T. R., Jr., & Glynn, S. M. (2007). Attitudinal and motivational constructs in science learning. Handbook of research on science education (pp. 75–102). Mahwah, NJ: Lawrence Erlbaum.
  • Krapp, A., & Prenzel, M. (2011). Research on interest in science: Theories, methods and findings. International Journal of Science Education, 33(1), 27–50.
  • Kyndt, E., Raes, E., Lismont, B., Timmers, F., Cascallar, E., & Dochy, F. (2013). A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educational Research Review, 10, 133–149.
  • Lavoie, D. (1999). Effects of emphasizing hypothetico-predictive reasoning within the science learning cycle on high school student’s process skills and conceptual understandings in biology. Journal of Research in Science Teaching, 36(10), 1127–1147.
  • Lawson, A. E. (1982). Formal reasoning, achievement, and intelligence: An issue of importance. Science Education, 66 (1), 77-83.
  • Lawson, A. E. (1995). Science teaching and the development of thinking. California: Wadsworth Publishing Company.
  • Lawson, A. E., (2001). Using the learning cycle to teach biology concepts and reasoning patterns, Journal of Biological Education, 35(4), 165-169.
  • MEB (2018). Fen bilimleri dersi öğretim programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar). Ankara.
  • Moog R. S., & Farrell J. J., (2011). Chemistry: A guided inquiry. (5th ed.). USA: John Wiley & Sons, Inc.
  • Moog, R. S., Spencer, J. N., & Straumanis, A. R. (2006). Process-oriented guided inquiry learning: POGIL and the POGIL project. Metropolitan Universities, 17(4), 41-52.
  • National Research Council [NRC] (2012). A framework for K-12 science education: Practices, cross-cutting concepts, and core ideas. Washington, DC: The National Academies Press.
  • Organisation for Economic Co-Operation and Development. (2016). PISA 2015 results in focus: PISA (Vol. 1). Paris, France: OECD Publishing.
  • Özkanbaş, M., & Kırık, Ö. T. (2020). Implementing collaborative inquiry in a middle school science course. Chemistry Education Research and Practice, 21, 1199-1217.
  • Öztürk, İ. H. (2012). Öğretimin planlanmasında öğretmenin rolü ve özerkliği: Ortaöğretim tarih öğretmenlerinin yıllık plan hazırlama ve uygulama örneği. Kuram ve Uygulamada Eğitim Bilimleri, 12, 271-299.
  • Pallant, J. (2007). SPSS survival manual: A step by step guide to data analysis using SPSS for windows. New York: Open University Press
  • Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., et al. (2015). Phases of inquiry-based learning: definitions and the inquiry cycle. Educational Research Review, 14, 47 –61.
  • Pintrich, P. R. (1988). A process-oriented view of student motivation and cognition. In J. S. Stark & L. Mets (Eds.), Improving teaching and learning through research. New directions for institutional research, 57 (pp. 55-70). San Francisco: Jossey-Bass.
  • PhET (2022a). Bir molekül yapalım. [Çevrim-içi: https://phet.colorado.edu/sims/html/build-a-molecule/latest/build-a-molecule_tr.html], Erişim tarihi: 12.01.2019.
  • PhET (2022b). Etkinliklere gözat. [Çevrim-içi: https://phet.colorado.edu/tr/teaching-resources/browse-activities?sims=all&types=all&subjects=CHEMISTRY&levels=MIDDLE_SCHOOL&locales=all&query=bir+molek%C3%BCl+yapal%C4%B1m], Erişim tarihi: 05.01.2019.
  • Pintrich, P. R., Smith, D., Garcia, T., & McKeachie, W. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ). The University of Michigan, Ann Arbor, MI.
  • POGIL. (2022). POGIL Curricular materials. [Available online at: https://pogil.org/curricular-materials ], Retrieved on December 10, 2018.
  • Qureshi, S., Vishnumolakala, V. R., Southam, D. C., & Treagust, D. F. (2017). Inquiry-based chemistry education in a high-context culture: A Qatari case study. International Journal of Science and Mathematics Education, 15(6), 1017-1038.
  • Rahayu, S., Aldresti, F., & Fajaroh, F. (2019). Improving the quality of learning environment through Process Oriented Guided Inquiry Learning (POGIL) enriched by socioscientific issues (SSI) on chemistry solution. In Proceeding of the 4th International Conference on Education, 4(2), 76-86.
  • Rannikmae, M., & Holbrook, J. (2009).The meaning of scientific literacy. International Journal of Environmental & Science Education, 4(3), 275-288.
  • Rickey, D., & Stacy, A. M. (2000). The role of metacognition in learning chemistry. Journal of Chemical Education, 77(7), 915. Roadrangka, V. (1991). The construction of a group assessment of logical thinking (GALT). Kasetsart Journal of Social Sciences, 12(2), 148-154.
  • Rosadi, I., Sunarno, W., & Article, H. (2018). The effectiveness of Process-Oriented Guided Inquiry Learning to improve students’ analytical thinking skills on excretory system topic. Biosaintifika: Journal of Biology & Biology Education, 10(3), 684–690.
  • Royal Society of Chemistry [RSC] (2022). Education: Inspiring your teaching and learning. [Available online at: https://edu.rsc.org/searchresults?qkeyword=&PageSize=10%20&%20108%20parametrics=WVFACET5%7C115500%2CWVFACET2%7C115153%2CWVF%20ACET2%7C115155&cmd=AddPm&val=WVFACET2%7C115154], Retrieved on January 13, 2019.
  • Royal Society of Chemistry (n.d.). Chemical misconceptions II - An analogy for the atom. [Available online at: https://edu.rsc.org/download?ac=13333], Retrieved on January 13, 2019.
  • Roadrangka V., Yeany, R.H. & Padilla M.J. (1982). Group test of logical thinking. University of Georgia, Athens, GA.
  • Roadrangka, V. (1991). The construction of a Group Assessment of Logical Thinking (GALT). Kasetsant Journal: Social Sciences, 12(2), 148-154.
  • Rojas-Drummond, S., & Mercer, N. (2003). Scaffolding the development of effective collaboration and learning. International Journal of Educational Research, 39, 99–111.
  • Rosenshine, B. & Meister, C. (1992). The use of scaffolds for teaching higher level cognitive strategies. Educational Leadership, April, 26-33.
  • Ryan, R. M., & Deci, E. L. (2000). When rewards compete with nature: The undermining of intrinsic motivation and self‐regulation. In C. Sansone & J. M. Harackiewicz (Eds.), Intrinsic and extrinsic motivation: The search for optimal motivation and performance (pp. 13–54). San Diego, CA: Academic Press.
  • Sevinc, B., Ozmen, H., & Yigit, N. (2011). Investigation of primary students’ motivation levels towards science learning. Science Education International, 22(3), 218-232.
  • Schlatter, E., Molenaar, I., & Lazonder, A. W. (2020). Individual differences in children’s development of scientific reasoning through ınquiry-based instruction: Who needs additional guidance? Frontiers in Psychology, 11, 1–14.
  • Sharma, T. (2022). Promoting creative thinking with Process Oriented Guided Inquiry Learning (POGIL). The Journal of Oriental Research Madras, 92(47), 43–49.
  • Şen, Ş., Yılmaz, A., & Geban, Ö. (2015). The effects of Process Oriented Guided Inquiry Learning environment on students’ self-regulated learning skills. Problems of Education in the 21st Century, 66, 54–66.
  • Valanides, N. C. (1996). Formal reasoning and science teaching. School Science and Mathematics, 96 (2), 99-111.
  • Van Leeuwen, A., & Janssen, J. (2019). A systematic review of teacher guidance during collaborative learning in primary and secondary education. Educational Research Review, 27, 71-89.
  • Villagonzalo, E. C. (2014, March). Process oriented guided inquiry learning: An effective approach in enhancing students’ academic performance. In DLSU Research congress (Vol. 2, No. 1, pp. 1-6).
  • Vishnumolakala, V. R., Southam, D. C., Treagust, D. F., Mocerino, M., & Qureshi, S. (2017). Students’ attitudes, self-efficacy and experiences in a modified processoriented guided inquiry learning undergraduate chemistry classroom. Chemistry Education Research and Practice, 18(2), 340-352.
  • Vygotsky, L. (1978). Mind in society: The development of higher psychological processes. Cambridge, Mass: Harvard University Press. Wadsworth Publishing Company.
  • Yuliana, N., Purwati, N., & Hanapi, H. (2022). Improving student's logical thinking abilities and learning outcomes through guided inquiry model. Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram, 10(2), 345-351.
  • Yuliastini, I. B., Rahayu, S., Fajaroh, F., & Mansour, N. (2018). Effectiveness of POGIL with ssi context on vocational high school students’ chemistry learning motivation. Jurnal Pendidikan IPA Indonesia, 7(1), 85–95.
  • Zeineddin, A. & Abd-El-Khalick, F. (2010). Scientific reasoning and epistemological commitments: Coordination of theory and evidence among college science students. Journal of Research in Science Teaching, 47(9), 1064– 1093.
Pamukkale Üniversitesi Eğitim Fakültesi Dergisi-Cover
  • ISSN: 1301-0085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1996
  • Yayıncı: -
Sayıdaki Diğer Makaleler

Ortaokul Öğrencilerinde Problemli İnternet Kullanımı İle Öz-yeterlik Arasındaki İlişkide Yaşam Doyumunun Aracı Rolünün İncelenmesi

Osman CIRCIR, Cansel YÖNET DEMİRHAN, Merve AYDEMİR, Handan BALCI, Hatice Rana CAN, Zekeriya GÖKCE

Öğretmenlerin Mesleki Tükenmişlik Düzeylerini Azaltmada Öncelenmesi Gereken Mesleki Sosyal Destek Faktörleri

Emre TOPRAK, Mustafa ÇELEBİ, Pınar ORMAN

Ana Dili Olarak Türkçe Öğretiminde Eşdizimsel Farkındalık ve Ortaokul Öğrencilerinin Eşdizimsel Yeterlikleri

Seher ÇİÇEK, Ahmet ASAR

Müzik Eğitimi Öğrencilerinin Öz-Yönetimli Öğrenme Düzeyleri İle Piyano Öğrenme Stilleri Arasındaki İlişki

Gizem GEDİK, Serkan DEMİRTAŞ

Denizli Türkülerinin İlköğretim Müzik Dersinde Kullanılabilirliğine Yönelik Bir Araştırma

Serkan DEMİREL, Ahmet Mutlu TERZİOĞLU

Yabancı Dil Olarak Türkçe Öğretiminde Biçimbilimsel Ve Sözdizimsel Uzatıma İlişkin Öğrenici Farkındalık Düzeyleri

Seda DEMİR, Alpaslan OKUR

Süreç Odaklı Rehberli Sorgulamayla Öğrenmenin Motivasyon ve Mantıksal Düşünme Becerilerine Etkisi

Leman ALAKOYUN, Özgecan TAŞTAN KIRIK

İlkokul Programı Değerler Eğitimi Uygulamalarına İlişkin Öğretmen Görüşlerinin Değerlendirilmesi

Ramazan ÖZBEK, Veysi ERZEN

Sınıf Eğitiminde Farklı Uzmanlaşma Modellerinin Öğrencilere Yansımaları: Dört Yıllık Boylamsal Bir Çalışma

Yasin AY, Nilay BUMEN

Nedenleri Sonuçları ve Çözüm Önerileri Bağlamında Akran Zorbalığı: Bir Olgubilim Çalışması

Soner DOĞAN, Osman KELEŞ