In terms of temporomandibular joint dysfunction, according to Helkimo dysfunction index, comparison of bone changes determined in cone-beam computed tomography in symptomatic and asymptomatic patients and the relationship of this clinical index with bone changes on radiography

Amaç: Temporomandibular eklem disfonksiyonu (TMED), TME’i ve ilişkili olduğu kas, yumuşak doku ve kemik bileşenlerini etkileyen, bir şemsiye terimdir. Bu çalışmada, TMED açısından semptomatik ve asemptomatik hastaların, TME bölgesindeki kemik değişikliklerini karşılaştırmak ve ayrıca Helkimo Di’nin (disfonksiyon indeksi) kemik değişiklikleri ve yaşla ilişkisinin araştırılması amaçlandı. Gereç ve yöntem: Çalışmaya, TMED açısından, 34 semptomatik ve 34 asemptomatik toplam 68 hasta dahil edildi. TMED’nun şiddetini belirlemek amacıyla yapılan klinik muayene kapsamında, Helkimo Di kullanıldı. Radyolojik muayenede, konik-ışınlı bilgisayarlı tomografi (KIBT) ile TME bölgesindeki kemik değişiklikleri belirlendi. Bulgular: Çalışma grubunun yaş ortalaması 30,35'ti ve %76,5’i kadındı. Kontrol grubu için bu değerler, 38,5 ve %44,1 idi (p

In terms of temporomandibular joint dysfunction, according to Helkimo dysfunction index, comparison of bone changes determined in cone-beam computed tomography in symptomatic and asymptomatic patients and the relationship of this clinical index with

Purpose: Temporomandibular joint dysfunction (TMJD), is an umbrella term that affects TMJ and associated muscle, soft tissue, and bone components. In this study, it was aimed to compare the bone changes in the TMJ region of symptomatic and asymptomatic patients in terms of TMJD and also to investigate Helkimo Di's (dysfunction index) relationship with bone changes and age. Materials and methods: In terms of TMJD, 34 symptomatic and 34 asymptomatic, a total of 68 patients were included in the study. Within the scope of the clinical examination in order to determine the severity of TMJD, Helkimo Di was used. In the radiological examination, by cone-beam computed tomography (CBCT), bone changes in the TMJ region were determined. Results: The mean age of the study group was 30.35, and 76.5% were females. For the control group, these values were 38.5 and 44.1% (p

___

  • 1. Mujakperuo HR, Watson M, Morrison R, Macfarlane TV. Pharmacological interventions for pain in patients with temporomandibular disorders. Cochrane Database Syst Rev 2010:CD004715. https://doi. org/10.1002/14651858.CD004715.pub2
  • 2. dos Anjos Pontual ML, Freire JSL, Barbosa JMN, Frazão MAG, dos Anjos Pontual A, Fonseca da Silveira MM. Evaluation of bone changes in the temporomandibular joint using cone beam CT. Dentomaxillofac Radiol 2012;41:24-29. https://doi.org/10.1259/dmfr/17815139
  • 3. Pihut M, Ferendiuk E, Szewczyk M, Kasprzyk K, Wieckiewicz M. The efficiency of botulinum toxin type A for the treatment of masseter muscle pain in patients with temporomandibular joint dysfunction and tensiontype headache. J Headache Pain 2016;17:29. https:// doi.org/10.1186/s10194-016-0621-1
  • 4. Peck CC, Murray GM, Gerzina TM. How does pain affect jaw muscle activity? The integrated pain adaptation model. Aust Dent J 2008;53:201-207. https://doi.org/10.1111/j.1834-7819.2008.00050.x
  • 5. Mapelli A, Zanandrea Machado BC, Giglio Master LD, Sforza C, De Felicio CM. Reorganization of muscle activity in patients with chronic temporomandibular disorders. Arch Oral Biol 2016;72:164-171. https://doi. org/10.1016/j.archoralbio.2016.08.022
  • 6. Hiraba K, Hibino K, Hiranuma K, Negoro T. EMG activities of two heads of the human lateral pterygoid muscle in relation to mandibular condyle movement and biting force. J Neurophysiol 2000;83:2120-2137. https://doi.org/10.1152/jn.2000.83.4.2120
  • 7. De Leeuw R, Klasser GD. Orofacial pain: guidelines for assessment, diagnosis, and management. Am J Orthod Dentofacial Orthop 2008;134:171. https://doi. org/10.1016/j.ajodo.2008.05.001
  • 8. Rao VM, Bacelar MT. MR imaging of the temporomandibular joint. Magn Reson Imaging Clin N Am 2002;10:615-630. https://doi.org/10.1016/s1064- 9689(02)00011-9
  • 9. Dworkin SF, LeResche L. Research diagnostic criteria for temporomandibular disorders: review, criteria, examinations and specifications, critique. J Craniomandib Disord 1992;6:301-355.
  • 10. Dijkgraaf LC, Liem RS, de Bont LG. Ultrastructural characteristics of the synovial membrane in osteoarthritic temporomandibular joints. J Oral Maxillofac Surg 1997;55:1269-1279. https://doi. org/10.1016/s0278-2391(97)90183-x
  • 11. Kalladka M, Quek S, Heir G, Eliav E, Mupparapu M, Viswanath A. Temporomandibular joint osteoarthritis: diagnosis and long-term conservative management: a topic review. J Indian Prosthodont Soc 2014;14:6-15. https://doi.org/10.1007/s13191-013-0321-3
  • 12. Hatcher DC, Aboudara CL. Diagnosis goes digital. Am J Orthod Dentofacial Orthop 2004;125:512-515. https://doi.org/10.1016/j.ajodo.2003.12.009
  • 13. Honda K, Larheim TA, Maruhashi K, Matsumoto K, Iwai K. Osseous abnormalities of the mandibular condyle: diagnostic reliability of cone beam computed tomography compared with helical computed tomography based on an autopsy material. Dentomaxillofac Radiol 2006;35:152-157. https://doi. org/10.1259/dmfr/15831361
  • 14. Tsiklakis K, Syriopoulos K, Stamatakis HC. Radiographic examination of the temporomandibular joint using cone beam computed tomography. Dentomaxillofac Radiol 2004;33:196-201. https://doi. org/10.1259/dmfr/27403192
  • 15. Talaat W, Al Bayatti S, Al Kawas S. CBCT analysis of bony changes associated with temporomandibular disorders. Cranio 2016;34:88-94. https://doi.org/10.11 79/2151090315Y.0000000002
  • 16. Nah KS. Condylar bony changes in patients with temporomandibular disorders: a CBCT study. Imaging Sci Dent 2012;42:249-253. https://doi.org/10.5624/ isd.2012.42.4.249
  • 17. Su N, Liu Y, Yang X, Luo Z, Shi Z. Correlation between bony changes measured with cone beam computed tomography and clinical dysfunction index in patients with temporomandibular joint osteoarthritis. J Craniomaxillofac Surg 2014;42:1402-1407. https://doi. org/10.1016/j.jcms.2014.04.001
  • 18. Shahidi S, Vojdani M, Paknahad M. Correlation between articular eminence steepness measured with cone-beam computed tomography and clinical dysfunction index in patients with temporomandibular joint dysfunction. Oral Surg Oral Med Oral Pathol Oral Radiol 2013;116:91-97. https://doi.org/10.1016/j. oooo.2013.04.001
  • 19. Helkimo M. Studies on function and dysfunction of the masticatory system. IV. Age and sex distribution of symptoms of dysfunction of the masticatory system in Lapps in the north of Finland. Acta Odontol Scand 1974;32:255-267. https://doi. org/10.3109/00016357409026342
  • 20. Khojastepour L, Vojdani M, Forghani M. The association between condylar bone changes revealed in cone beam computed tomography and clinical dysfunction index in patients with or without temporomandibular joint disorders. Oral Surg Oral Med Oral Pathol Oral Radiol 2017;123:600-605. https://doi.org/10.1016/j. oooo.2017.01.006
  • 21. Ahmad M, Hollender L, Anderson Q, et al. Research diagnostic criteria for temporomandibular disorders (RDC/TMD): development of image analysis criteria and examiner reliability for image analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:844- 860. https://doi.org/10.1016/j.tripleo.2009.02.023
  • 22. Koyama J, Nishiyama H, Hayashi T. Follow-up study of condylar bony changes using helical computed tomography in patients with temporomandibular disorder. Dentomaxillofac Radiol 2007;36:472-477. https://doi.org/10.1259/dmfr/28078357
  • 23. Yamada K, Hiruma Y, Hanada K, Hayashi T, Koyama J, Ito J. Condylar bony change and craniofacial morphology in orthodontic patients with temporomandibular disorders (TMD) symptoms: a pilot study using helical computed tomography and magnetic resonance imaging. Clin Orthod Res 1999;2:133-142. https://doi.org/10.1111/ocr.1999.2.3.133
  • 24. Wiberg B, Wanman A. Signs of osteoarthrosis of the temporomandibular joints in young patients: a clinical and radiographic study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;86:158-164. https://doi. org/10.1016/s1079-2104(98)90118-4
  • 25. Al Ekrish AA, Al Juhani HO, Alhaidari RI, Alfaleh WM. Comparative study of the prevalence of temporomandibular joint osteoarthritic changes in cone beam computed tomograms of patients with or without temporomandibular disorder. Oral Surg Oral Med Oral Pathol Oral Radiol 2015;120:78-85. https:// doi.org/10.1016/j.oooo.2015.04.008
  • 26. Kiliç SC, Kiliç N, Sümbüllü M. Temporomandibular joint osteoarthritis: cone beam computed tomography findings, clinical features, and correlations. Int J Oral Maxillofac Surg 2015;44:1268-1274. https://doi. org/10.1016/j.ijom.2015.06.023
  • 27. Alexiou K, Stamatakis H, Tsiklakis K. Evaluation of the severity of temporomandibular joint osteoarthritic changes related to age using cone beam computed tomography. Dentomaxillofac Radiol 2009;38:141-147. https://doi.org/10.1259/dmfr/59263880
  • 28. Bae S, Park MS, Han JW, Kim YJ. Correlation between pain and degenerative bony changes on cone-beam computed tomography images of temporomandibular joints. Maxillofacial Plast Reconstr Surg 2017;39:19. https://doi.org/10.1186/s40902-017-0117-1
  • 29. Alkhader M, Al Sadhan R, Al Shawaf R. Cone-beam computed tomography findings of temporomandibular joints with osseous abnormalities. Oral Radiol 2012;28:82-86. https://doi.org/10.1007/s11282-012- 0094-0
  • 30. Arnett GW, Milam SB, Gottesman L. Progressive mandibular retrusion-idiopathic condylar resorption. Part I. Am J Orthod Dentofacial Orthop 1996;110:8-15. https://doi.org/10.1016/s0889-5406(96)70081-1
  • 31. Widmalm SE, Westesson PL, Kim IK, Pereira Jr FJ, Lundh H, Tasaki MM. Temporomandibular joint pathosis related to sex, age, and dentition in autopsy material. Oral Surg Oral Med Oral Pathol 1994;78:416- 425. https://doi.org/10.1016/0030-4220(94)90031-0
  • 32. Yasuoka T, Nakashima M, Okuda T, Tatematsu N. Effect of estrogen replacement on temporomandibular joint remodeling in ovariectomized rats. J Oral Maxillofac Surg 2000;58:189-196. https://doi.org/10.1016/s0278- 2391(00)90337-9
  • 33. Ishibashi H, Takenoshita Y, Ishibashi K, Oka M. Agerelated changes in the human mandibular condyle: a morphologic, radiologic, and histologic study. J Oral Maxillofac Surg 1995;53:1016-1023. https://doi. org/10.1016/0278-2391(95)90117-5
  • 34. Cortese SG, Fridman DE, Farah CL, Bielsa F, Grinberg J, Biondi AM. Frequency of oral habits, dysfunctions, and personality traits in bruxing and nonbruxing children: a comparative study. Cranio 2013;31:283- 290. https://doi.org/10.1179/crn.2013.31.4.006
  • 35. Lelis ER, Guimaraes Henriques JC, Tavares M, de Mendonca MR, Fernandes Neto AJ, de Araujo Almeida G. Cone-beam tomography assessment of the condylar position in asymptomatic and symptomatic young individuals. J Prosthet Dent 2015;114:420-425. https://doi.org/10.1016/j.prosdent.2015.04.006
  • 36. Von Korff MR, Howard JA, Truelove EL, Sommers E, Wagner EH, Dworkin S. Temporomandibular disorders. Variation in clinical practice. Med Care 1988;26:307- 314.
  • 37. De Kanter RJ, Truin GJ, Burgersdijk RC, et al. Prevalence in the Dutch adult population and a metaanalysis of signs and symptoms of temporomandibular disorder. J Dent Res 1993;72:1509-1518. https://doi.or g/10.1177/00220345930720110901
  • 38. Crusoé Rebello IMR, Campos PSF, Rubira IRF, Panella J, Mendes CMC. Evaluation of the relation between the horizontal condylar angle and the internal derangement of the TMJ-a magnetic resonance imaging study. Pesqui Odontol Bras 2003;17:176-182. https://doi.org/10.1590/s1517-74912003000200015
  • 39. Larsson E, Ronnerman A. Mandibular dysfunction symptoms in orthodontically treated patients ten years after the completion of treatment. Eur J Orthod 1981;3:89-94. https://doi.org/10.1093/ejo/3.2.89
  • 40. Paknahad M, Shahidi S, Akhlaghian M, Abolvardi M. Is mandibular fossa morphology and articular eminence inclination associated with temporomandibular dysfunction? J Dent (Shiraz) 2016;17:134-141.