Ferrik ve ferröz demirin asidoliz ve redoksoliz aktivitelerinin Saccharomyces cerevisiae ve Acetobacter aceti ile biyoproses modellemesi

Asidoliz ve redoksoliz reaksiyonları, canlı organizmalar için hayati önem taşıyan ferrik [Fe^(+3) ] ve ferröz demirin [Fe^(+2) ] oksidasyonunu ve indirgenmesini düzenler. Saccharomyces cerevisiae ve Acetobacter aceti tarafından ferrikten ferros demire [(Fe^(+3))/(Fe^(+2) )] redoksoliz aktiviteleri ile birlikte asidolizin biyoproses modellemesi incelenmiştir. Biyoproses deneyleri, sekiz hafta boyunca 25oC, 30oC ve 35oC farklı sıcaklıklarda gerçekleştirilmiştir. İnkübasyon ortamında substrat ve asidik amaçlarla glukoz, askorbik asit, asetik asit, etil alkol ve sirke kullanılmıştır. [(Fe^(+3))/(Fe^(+2) )] oranları pH ve Nernst denklemlerinden belirlenmiş ve biyoproseslerin modellenmesi Michaelis-Menten denkleminden spesifik demir kullanım oranı kullanılarak yapılmıştır. [Fe^(+2) ] iyonların oksidasyon sonucu, mikrobiyal ortamda 35oC'de fark edilebilir bulunmuştur.

Bioprocesses modeling of acidolysis and redoxolysis activities of ferric and ferrous iron by Saccharomyces cerevisiae and Acetobacter aceti

The acidolysis and redoxolysis reactions regulate the oxidation and reduction of ferric [Fe^(+3) ] and ferrous iron [Fe^(+2) ] which are vital for living organisms. Bioprocesses modeling of the acidolysis along with redoxolysis activities of ferric to ferrous iron [(Fe^(+3))/(Fe^(+2) )] by Saccharomyces cerevisiae and Acetobacter aceti was studied. The bioprocess experiments were carried out at different temperatures of 25oC, 30oC and 35oC for eight weeks. Glucose, ascorbic acid, acetic acid, ethyl alcohol and vinegar were used in incubation media as substrate and acidic purposes. The [(Fe^(+3))/(Fe^(+2) )] ratios were determined from pH and Nernst equation, and the modeling of the bioprocesses was accomplished by employing the specific iron utilization rate from Michaelis-Menten equation. The oxidation result of ions was found noticeable at 35oC in the microbial environment.

___

  • [1]. Yiannikourides A,. Latunde-Dada GO. A short review of iron metabolism and pathophysiology of iron disorders. Medicines, 2019; 6:85. https://doi:10.3390/medicines6030085.
  • [2]. Sukru G, Anderson GJ, Collins JF. Mechanistic and regulatory aspects of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol, 2014; 307:G397–G409. https://doi:10.1152/ajpgi.00348.2013.
  • [3]. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014; 19(2):164-74.
  • [4]. Askwith CC, De Silva D, Kaplan J. Molecular biology of iron acquisition in Saccharomyces cerevisiae. Mol Microbiol, 1996; 20:27–34. https://doi.org/10.1111/j.1365-2958.1996.tb02485.
  • [5]. Pas M, Piskur B, Sustaric M, Raspor P. Iron enriched yeast biomass - a promising mineral feed supplement. Bioresour Technol. 2007; 98:1622–1628.
  • [6]. Peter R, Goranovič D. Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol, 2008; 28:101-124. https://doi.org/10.1080/07388550802046749 [7]. Matsushita K, Inoue T, Adachi O, Toyama H. Acetobacter aceti possesses a proton motive force-dependent efflux system for acetic acid. J Bacteriol, 2005; 187:4346–4352.
  • [8]. Plumb JJ, Muddle R, Franzmann, PD. Effect of pH on rates of iron and sulfur oxidation by organisms. Eng, 2008; 21:76-82.
  • [9]. Ojumu T, Hansford G, Petersen J. The kinetics of ferrous-iron oxidation by Leptospirillum ferriphilum in continuous culture: The effect of temperature. Biochem Eng J, 2009; 46:161-168. 10.1016/j.bej.2009.05.001.