Çeşitli İş Kollarında Çalışanların Ellerinden Elde Edilen Yanıltıcı Kalıntı Varlığının Araştırılması

Ateşli silahların kullanıldığı polisiye olayların aydınlatılması için kriminal laboratuvarlarında el svap analizi yapılmaktadır. Analizlerden elde edilen sonuçların güvenilirliği, kimya anabilim dalının konusu olup örneklem güvenilirliğine dayalıdır. Bu çalışmada, insanların günlük hayatta ellerinde kurşun kalıntısı olup olmayacağı konusuna bilimsel bir cevap verebilmek için on beş farklı iş kolunda çalışan kişilerin el sürüntüleri transfer kiti kullanılarak elde edilmiştir. Toplanan numuneler ilk olarak Taramalı Elektron Mikroskobu (SEM-EDS) ile incelenmiştir. Numunelerde Sb&Ba&Pb elementleri ve bunların kombinasyonları incelenmiştir. SEM-EDS analizinden sonra tüm numuneler GFAAS yöntemi kullanılarak antimon element miktarının belirlenmesi için analiz edilmiştir. Elde edilen sonuçlara göre matbaada kullanılan kumpasın yüzeyinde GFAAS aracılığıyla antimon elementi tespit edildi. Otomobil akü tamircisi ve market kasiyerinin ellerinden alınan sürüntülerde ayrıca SEM-EDS analizi ile Sb&Ba&Pb partikülü tespit edildi.

Investigation of Pseudo-residue Existence Obtained from the Hands of Employees in Various Business Lines

Handswap analysis is carried out in criminal laboratories in order to illuminate the crime scenes in which firearms are used. The reliability of the results obtained from the analyzes is the subject of the chemistry department and is based on sample reliability. In this study, the hand swabs of people working in fifteen various business lines were obtained using transfer kit in order to acquire a scientific response to the issue of whether there would be shot residues in the hands of people in everyday life. Collected samples were first examined by Scanning Electron Microscopy (SEM-EDS). The elements of Sb&Ba&Pb, as well as their combinations, were investigated in the samples. After SEM-EDS analysis, all samples were analyzed using graphite furnace atomic absorption spectrometry (GFAAS) method to determine the amount of antimony element. According to the results, antimony element was detected on the surface of the caliper used in the printing house via GFAAS. Sb&Ba&Pb particles were also detected by SEM-EDS analysis in the swabs taken from the hands of the automobile battery repairman and the market cashier.

___

  • Ali, L., Brown, K., Castellano, H., Wetzel, S. J. A Study of the Presence of Gunshot Residue in Pittsburgh Police Stations using SEM/EDS and LC-MS/MS. Journal of Forensic Sciences 2016; 61(4): 928-938.
  • Aliste, M., et al. Particle Analysis for the Detection of Gunshot Residue (GSR) in Nasal Samples Using Scanning Laser Ablation and Inductively Coupled Plasma-Mass Spectrometry (SLA-ICPMS). Journal of Forensic Sciences 2020; 65(4): 1094-1101.
  • Bender, R., Neimke, D., Niewöhner, L., Barth, M., Ebert, M. Discrimination of SINTOX® GSR against environmental particles and its automated investigation by SEM/EDS. Forensic Chemistry 2021; 24: 100338-100354.
  • Blakey, L. S., Sharples, G. P., Chana, K., Birkett, J. W. The fate and behaviour of gunshot residue: recreational shooter distribution. Australian Journal of Forensic Sciences 2019; 51: 176-179.
  • Brozek-Mucha, Z., Jankowicz, A. Evaluation of the possibility of differentiation between various types of ammunition by means of GSR examination with SEM-EDX method. Forensic Science International 2001; 123: 39-47.
  • Caccia, G., Mazzarelli, D., Amadasi, A., Rizzi, A., Caccianiga, M., Cattaneo, C. SEM-EDX analysis of microscopic surface debris collected from the skin - preliminary study. Australian Journal of Forensic Sciences 2021; 1-21.
  • Chang, K. H., Jayaprakash, P. T., Abdullah, A. F. L. Application of different standard loading approaches during solid phase microextraction for forensic analysis of single particle smokeless powders. Australian Journal of Forensic Sciences 2014; 47(2): 147-160.
  • Chang, K. H., Jayaprakash, P. T., Yew, C. H., Abdullah, A. F. L. Gunshot residue analysis and its evidential values: a review. Australian Journal of Forensic Sciences 2013; 45(1): 3-23.
  • Comanescu, M. A., Millett, T. J., Kubic, T. A. A Study of Background Levels of Antimony, Barium, and Lead on Vehicle Surface Samples by Graphite Furnace Atomic Absorption. Journal of Forensic Sciences 2019; 64(2): 565-569.
  • Costa, R. A., et al. Gunshot residues (GSR) analysis of clean range ammunition using SEM/EDX, colorimetric test and ICP-MS: A comparative approach between the analytical techniques. Microchemical Journal 2016; 129: 339-347.
  • Dalby, O., Butler, D., Birkett, J. W. Analysis of gunshot residue and associated materials-a review. Journal of Forensic Sciences 2010; 55(4): 924-943.
  • Di Maio, V. J. M. Gunshot Wounds, Practical Aspects of Firearms, Ballistics and Forensic Tecniques. New York, CRC Press., 1999.
  • Feeney, W., Menking-Hoggatt, K., Arroyo, L., Curran, J., Bell, S., Trejos, T. Evaluation of organic and inorganic gunshot residues in various populations using LC-MS/MS. Forensic Chemistry 2022; 27: 100389-100400.
  • Feeney, W., Menking-Hoggatt, K., Vander Pyl, C., Ott, C. E., Bell, S., Arroyo, L., Trejos, T. Detection of organic and inorganic gunshot residues from hands using complexing agents and LC-MS/MS. Analytical Methods 2021; 13(27): 3024-3039.
  • Fidan, N. F., İzgi, B. Determination of antimony in gunshot residues (GSR) by electrothermal atomic absorption spectrometry. Bulgarian Chemical Communications 2009; 41(4): 404-408.
  • Gassner, A. L., Weyermann, C. Prevalence of organic gunshot residues in police vehicles. Science and Justice 2020; 60(2): 136-144.
  • Goudsmits, E., Sharples, G. P., Birkett, J. W. Preliminary classification of characteristic organic gunshot residue compounds. Science and Justice 2016; 56(6): 421-425.
  • Grima, M., Butler, M., Hanson, R., Mohameden, A. Firework displays as sources of particles similar to gunshot residue. Science and Justice 2012; 52(1): 49-57.
  • Hearns, N. G., Lafleche, D. N., Sandercock, M. L. Preparation of a Ytterbium-tagged Gunshot Residue Standard for Quality Control in the Forensic Analysis of GSR. Journal of Forensic Sciences 2015; 60(3): 737-742.
  • Kara, I., Lisesivdin, S. B., Kasap, M., Er, E., Uzek, U. The Relationship Between the Surface Morphology and Chemical Composition of Gunshot Residue Particles. Journal of Forensic Sciences 2015; 60(4): 1030-1033.
  • Kara, İ., Yalçinkaya, Ö. Evaluation of persistence of gunshot residue (GSR) using graphite furnace atomic absorption spectrometry (GFAAS) method. Bulgarian Chemical Communications 2017; 49(1): 101-108.
  • Koons, R. D., Havekost, D. G., Peters, C. A. Analysis of Gunshot Primer Residue Collection Swabs Using Flameless Atomic Absorption Spectrophotometry: A Reexamination of Extraction and Instrument Procedures. Journal of Forensic Sciences 1987; 32(4): 846-865.
  • Maitre, M., Kirkbride, K. P., Horder, M., Roux, C., Beavis, A. Thinking beyond the lab: organic gunshot residues in an investigative perspective. Australian Journal of Forensic Sciences 2018; 1-7.
  • Matricardi, V. R., Kilty, W. Detection of Gunshot Residue Particles From the Hands of a Shooter. Journal of Forensic Sciences 1977; 2: 725-738.
  • Montoriol, R., et al. Gunshot residue detection in stagnant water: SEM-EDX or ICP-MS? A preliminary study. Journal of Forensic Sciences 2021; 66(4): 1267-1275.
  • Rijnders, M. R., Stamouli, A., Bolck, A. Comparison of GSR composition occurring at different locations around the firing position. Journal of Forensic Sciences 2010; 55(3): 616-623.
  • Romolo, F. S., Bailey, M. J., de Jesus, J., Manna, L., Donghi, M. Unusual sources of Sn in GSR. An experimental study by SEM and IBA. Science & Justice 2019; 59(2): 181-189.
  • Romolo, F. S., Margot P. Identification of gunshot residue: a critical review. Forensic Science International 2001; 119: 195-211. Rosengarten, H., Israelsohn, O., Sirota, N., Mero, O. Finding GSR evidence on used towels. Forensic Science International 2021; 328: 111032-111036.
  • Shrivastava, P., Jain, V. K., Nagpal, S. Gunshot residue detection Technologies-a review. Egyptian Journal of Forensic Sciences 2021; 11(1): 1-21.
  • Stamouli, A., et al. Survey of gunshot residue prevalence on the hands of individuals from various population groups in and outside Europe. Forensic Chemistry 2021; 23: 100308-100316.
  • Tahirukaj, M., Olluri, B., Surleva, A. A study of the effect of working parameters and validation of SEM/EDS method for determination of elemental composition of commonly encountered GSR samples in shooting events in Kosovo. Journal of Forensic Sciences 2021; 66(6): 2393-2404.
  • Tarifa, A., Almirall, J. R. Fast detection and characterization of organic and inorganic gunshot residues on the hands of suspects by CMV-GC-MS and LIBS. Science & Justice 2015; 55(3): 168-175.
  • Taudte, R. V., Beavis, A., Blanes, L., Cole, N., Doble, P., Roux, C. Detection of gunshot residues using mass spectrometry. BioMed Research International 2014: 965403-965419.
  • Tucker, W., Lucas, N., Seyfang, K. E., Kirkbride, K. P., Popelka-Filcoff, R. S. Gunshot residue and brakepads: Compositional and morphological considerations for forensic casework. Forensic Science International 2017; 270: 76-82.
  • Tugcu, H., et al. Determination of gunshot residues with image analysis: an experimental study. Military Medicine 2005; 170(9): 802-805.
  • Ulrich, A., Moor, C., Vonmont, H., Jordi, H. R., Lory, M. ICP-MS trace-element analysis as a forensic tool. Analytical and Bioanalytical Chemistry 2004; 378(4): 1059-1068.
  • Werner, D., Gassner, A. L., Marti, J., Christen, S., Wyss, P., Weyermann, C. Comparison of three collection methods for the sodium rhodizonate detection of gunshot residues on hands. Science & Justice 2020; 60(1): 63-71.
  • Yüksel, B., Ozler-Yigiter, A., Bora, T., Sen, N., Kayaalti, Z. GFAAS Determination of Antimony, Barium, and Lead Levels in Gunshot Residue Swabs: An Application in Forensic Chemistry. Atomic Spectroscopy 2016; 37(4): 164-169.
  • Yüksel, B., Şen, N., Ögünç, G. I., Erdoğan, A. Elemental profiling of toxic and modern primers using ICP-MS, SEM-EDS, and XPS: an application in firearm discharge residue investigation. Australian Journal of Forensic Sciences 2022; 1-18.
Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2687-3729
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2018
  • Yayıncı: Osmaniye Korkut Ata Üniversitesi
Sayıdaki Diğer Makaleler

İş Güvenliğinde Fiziksel Risk Etmenlerinin Tespitinde İş Etüdü Tekniğinin Kullanımı-Bir Tekstil İşletmesi Örneği

Gülşah BUGAY ÇAĞRI, Emel Ceyhun SABIR

M, ρ, and M/ρ Monoidleri için Sonlu Tam Yeniden Yazma Sistemleri

Aykut EMNİYET, Basri ÇALIŞKAN

Türk Çimento Üreticilerinin 2015-2020 Yılları Arasında Finansal Açıdan Değerlendirilmesi

Abdul Rahim BABUR, Gozde TANTEKIN CELIK

Bakır ve pirinç elektrot ile EDM yönteminde soğuk iş takım çeliği işlemede MRR, EWR ve KERF Analizi

Ferhat CERİTBİNMEZ, Elif Simay GÖKKAYA, Erdoğan KANCA

Ticari Olarak Satışta Olan Glütensiz Makarnaların Bazı Fiziksel, Kimyasal Ve Tekstürel Kalitelerinin Belirlenmesi

Fatma HAYIT, Sultan ACUN, Hülya GÜL

Poli (pirol-ko-o-amino fenol)/kitosan Kompozit Filmlerinin Farklı Monomer Oranlarındaki Çözeltilerde Elektrokimyasal Sentezi ve Karakterizasyonu

Süleyman YALÇINKAYA, Şirin DURAN

Ardışık SWARA TODIM Yöntemleri ile Bir Ağız Sağlığı Merkezi için Global Lokasyon Seçimi

G.nilay YÜCENUR, M.hakan YAZICI

Atık Kırmızı ve Beyaz Üzüm Posalarının Alternatif Kaba Yem Kaynağı Olarak Silolanmasının Besin Madde Kompozisyonu ve Silaj Kalite Özellikleri Üzerine Etkileri

İsmail ULGER, Mustafa ÖZDEMİR

Yol Tasarım ve İşletme Sorunlarının Trafik Kazaları Üzerindeki Etkisinin İncelenmesi: Buca Koop. Mahallesi Örneği

Yağmur ÖZİNAL AVŞAR, Zeynel Baran YILDIRIM, S.pelin ÇALIŞKANELLİ

İspir ve Kızılcahamam Kuru Fasulyesi için Gama Işını Lineer Soğurma Katsayıları ile Transmisyon Faktörlerinin Ölçülmesi Üzerine Deneysel Bir Çalışma

Burcu AKÇA