Poli (pirol-ko-o-amino fenol)/kitosan Kompozit Filmlerinin Farklı Monomer Oranlarındaki Çözeltilerde Elektrokimyasal Sentezi ve Karakterizasyonu

Bu çalışmada, poli(pirol-ko-o-aminofenol)/kitosan kompozit filmleri platin elektrot yüzeyinde farklı mol oranlarındaki (pirol:o-aminofenol; 8:2, 6:4, 1:1, 4:6 ve 2:8 ) çözeltilerde elektrokimyasal yöntemle sentezlenmiştir. Sentezlenen kompozit örnekleri FT-IR, dönüşümlü voltammetri (CV), dijital fotoğraf ve SEM görüntüleri teknikleri kullanılarak karakterize edilmiştir. Sentezlenen kompozit filmlerinin SEM görüntüleri incelendiğinde monomer oranı değiştikçe kompozit örneklerinin yüzey yapısının değiştiği sonucuna varılmıştır.Platin elektrot yüzeyine kaplanmış kompozit filmlerin elektrokimyasal davranışları incelendiğinde dönüşümlü voltamogramlarda ileri ve geri çevrimlerde ciddi akım değişimlerinin olmadığı görülmüştür. Bu sonuca göre kompozit filmlerinin elektrokimyasal olarak yüksek bir kararlığa sahip olduğu belirlenmiştir. Bunun yanında pirol miktarı en yüksek olan kompozit örneğinin (8:2) voltamogramında gözlenen yüksek kapasitif akım değerleri bu kompozit filminin elektrokimyasal kararlılığının en iyi seviyede olduğunu göstermiştir.

Electrochemical Synthesis and Characterization of Poly(Polypyrrole-co-o-aminophenol)/chitosan Composite Films in Solutions with Different Monomer Ratios

In this study, poly(pyrrole-co-o-aminophenol)/chitosan composite films were synthesized by electrochemical method in solutions of different molar ratios (pyrrole: o-aminophenol; 8:2, 6:4, 1:1, 4:6 and 2:8) on the platinum electrode surface. The synthesized composite samples were characterized using FT-IR, cyclic voltammetry (CV), digital photography and SEM imagery techniques. When the SEM images of the synthesized composite films were examined, it was concluded that the surface structure of the composite samples changed as the monomer ratio changed. When the electrochemical behavior of the composite films coated on the platinum electrode surface was examined, it was observed that there were no serious current changes in the forward and reverse cycles in the cyclic voltammograms. According to this result, it was determined that the composite films had a high electrochemical stability. In addition, the high capacitive current values observed in the voltammogram of the composite sample with the highest pyrrole content (8:2) showed that the electrochemical stability of this composite film was at the best level.

___

  • Amiri, M., Pakdel, Z., Bezaatpour, A., Shahrokhian, S. Electrocatalytic determination of sumatriptan on thesurface of carbon-paste electrode modified with a composite of cobalt/Schiff-base complex and carbon nanotube. Bioelectrochemistry 2011; 81 (2): 81-85.
  • Baghayeri, M., Zare, E.N., Hasanzadeh, R. Facile synyhesis of PSMA-g-3 ABA/MWCNTs nanocomposite as a substrate for hemoglabin immobilization: Application to catalysis of H2O2 Materials Science and Engineering 2014; 39:213-220.
  • Balint, R.,Cassidy, N. J., &Cartmell, S. H. Conductive polymers: towards a smart biomaterial fort issue engineering. Actabiomaterialia 2014;10 (6):2341-2353.
  • Bereket, G., Duran, B. Anti corrosive properties of electrosynthesized poly(m-aminophenol) on copper from aqueous phenylphosphonicacid solution.’’ Proress in OrganicCoatings 2009; 64: 57-66.
  • Chen, C., Sun, C., Gao, Y. Application of electrosynthesized poly(aniline-co-p-aminophenol) as a catecol sensor.Electrochemica Acta 2009; 54:2575-2580.
  • Guimard, N. K., Gomez N. AndSchmidt, C. E. Conductingpolymers in biomedical engineering”. Progress Polymer Science 2007; 32:876-921.
  • Herrasti, P., Recio, F.J., Ocon, P.,Fatas, E. Effect of the polymer layers and bilayers on the corrosion behavior of mild steel: comparison with polymers containing Zn microparticles. Progress in Organic Coating 2005; 54:285-291.
  • Hu, D.D., Shi, Q.Z., Tang, Z.X., Fang, Y., Kennedy, J.F. Co Salen immobilized on chitosan and its electrochemical behavior. Carbonhydrate Polymers 2001; 45: 385-393.
  • Huang, X., Li, M., Wang, L., Zhu, M., Menner, A., Springer, J. Synthesis and characterization of pyrrole and m-toluidine copolymers. Synthetic Metals 2001; 123: 435-441.
  • Karthikeyan, M., Satheesh Kumar, K.K., Elango, K.P. Batchsorptionstudies on theremoval of fluoride ions from water using eco-friendly conducting polymer/bio-polymer composites. Desalination 2011; 267 : 49-56.
  • Mazumdar, S.K., Composites Manufacturing: Materials, Product, and Process Engineering. 2002; New York. Poron, A.,and Rannou, P. Processible conjugated polymers: from organi c semiconductors to organic metals and süper conductors. Progress Polymer Science 2002; 27:135.
  • Tüken, T., Arslan, G., Yazıcı, B., Erbil, M. The corrosion protection of mildsteel by polypyrrole/polyphenol multilayer coating. Corrosion Science 2004; 46:2743-2754.
  • Uygun, A., Oksuz, L., Yavuz, A.G., Gulec, A., Sen, S. Characteristics of nanocomposite films deposited by atmospheric pressure uniform RF glow plasma. Current Applied Physics 2011; 11:250-254.
  • Uzun, D., Balaban Gündüzalp, A., Hasdemir, E. Selective determination of dopamine in the presence of üricacidand ascorbicacid by N,N’-bis(indole-3-carboxaldimine)-1,2-diaminocyclohexane thin film modified glassycarbon electrode by differential pulse voltammetry. Journal of Electroanalytical Chemistry 2015;747:68-76.
  • Yalçınkaya, S. Demetgül, C., Timur, M., Çolak, N. Electrochemical synthesis and characterization of polypyrrole chitosan composite on platinum electrode its electrochemical and thermal behaviors. Carbohydrate Polymers 2010; 79 (4):908-913.
  • Yalçınkaya, S.,Çakmak, D. Electrochemical synthesis of poly (pyrrole-co-o-anisidine)/chitosan composite films. Journal of Molecular Structure 2017; 1135:32-43.
  • Yalçınkaya, S., Duran, Ş. Chemical synthesis and characterization of poly (pyrrole co o aminophenol) / chitosan composite. Polymer Bulletin, 2022; Baskıda.
Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2687-3729
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2018
  • Yayıncı: Osmaniye Korkut Ata Üniversitesi