Küçük Kapasiteli, Yatay Eksenli ve Akış Hızlandırıcılı Rüzgar Türbinlerinin Performans Analizi

Kentsel ve kırsal alanlarda, konutların ve küçük işletmelerin kullanımına yönelik yenilenebilir enerji teknolojilerinden faydalanılarak elektrik enerjisi üretilmesi ülkelerin enerji ekonomisi ve stratejisi açısından oldukça önemlidir. Bu çalışmada, düşük rüzgâr hızlarında verimli çalışabilen, kentsel ve kırsal alanlarda konutların kullanımına yönelik küçük kapasiteli, yatay eksenli ve akış hızlandırıcılı (yayıcı) rüzgâr türbinlerinin tasarımı için analitik çözümleme ve modelleme yapılmıştır. Bunun için önce rotor çapı 1 m olan küçük bir rüzgar türbini seçilmiş, daha sonra bu rüzgar türbini akış hızlandırıcılı olarak modellenerek performans değerleri karşılaştırılmıştır. Elde edilen sonuçlara ve seçilen aerodinamik karakteristiklere göre, serbest akış rüzgar hızı 10 m/s iken açık akıştaki rüzgar türbini üzerinden elde edilen güç değeri 246,17 W iken, akış hızlandırıcılı rüzgar türbini üzerinde elde edilen güç değeri 333,2 W olarak hesaplanmıştır.

Performance Analysis of Small Capacity, Horizontal Axis and Flow Accelerator Wind Turbines

Generating electricity by using renewable energy technologies for the use of residences and small businesses in urban and rural areas is very important for the energy economy and strategy of countries. In this study, analytical analysis and modeling were carried out for the design of small capacity, horizontal axis and flow accelerator (diffuser) wind turbines that can operate efficiently at low wind speeds and are intended for residential use in urban and rural areas. For this, first a small wind turbine with a rotor diameter of 1 m was selected, then this wind turbine was modeled with a flow accelerator and its performance values were compared. According to the results and the selected aerodynamic characteristics, the free flow wind speed was 10 m/s and the power value obtained over the open flow wind turbine was 246,17 W, while the power value obtained on the flow accelerator wind turbine was calculated as 333,2 W.

___

  • [1] Bilgili M., Ozbek A., Sahin B., Kahraman A. An overview of renewable electric power capacity and progress in new technologies in the world, Renewable and Sustainable Energy Reviews 2015; 49: 323–334.
  • [2] Korompili A., Wu Q., Zhao H. Review of VSC HVDC connection for offshore wind power integration, Renewable and Sustainable Energy Reviews 2016; 59: 1405- 1414.
  • [3] Emmanouil G., Galanis G., Kalogeri C., Zodiatis G., Kallos G. 10-year high resolution study of wind, sea waves and wave energy assessment in the Greek offshore areas, Renewable Energy 2016; 90: 399-419.
  • [4] Islam MR., Mekhilef S., Saidur R. Progress and recent trends of wind energy technology, Renewable and Sustainable Energy Reviews 2013; 21: 456-468.
  • [5] Jones CR., Eiser JR. Understanding 'local' opposition to wind development in the UK: How big is a backyard? Energy Policy 2010; 38: 3106-3117.
  • [6] Kaldellis JK., Zafirakis D. The wind energy (r)evolution: A short review of a long history, Renewable Energy 2011; 36: 1887-1901.
  • [7] Kaplan YA. Overview of wind energy in the world and assessment of current wind energy policies in Turkey, Renewable and Sustainable Energy Reviews 2015; 43: 562- 568.
  • [8] Karthikeyan N., Murugavel KK., Kumar SA., Rajakumar S. Review of aerodynamic developments on small horizontal axis wind turbine blade, Renewable and Sustainable Energy Reviews 2015; 42: 801-822.
  • [9] Söderholm P., Pettersson M. Offshore wind power policy and planning in Sweden Energy, Policy 2011; 39: 518-525.
  • [10] IEA. Energy technology perspectives. International Energy Agency, https://www.iea.org (2010, accessed 14 July 2010).
  • [11] IEA. Technology roadmap, wind energy. International Energy Agency, https://www.iea.org (2013, accessed 7 June 2013).
  • [12] IRENA. Renewable energy benefits: measuring the economics. International Renewable Energy Agency, http://www.irena.org (2016, accessed 6 November 2016).
  • [13] Wang S., Wang S. Impacts of wind energy on environment: A review, Renewable and Sustainable Energy Reviews 2015; 49: 437- 443.
  • [14] Bilgili M., Sahin B. Electric power plants and electricity generation in Turkey, Energy Sources, Part B: Economics, Planning, and Policy 2010; 5; 81-92.
  • [15] EWEA, European Wind Energy Association, (2018). Wind energy in Europe in 2018. https://windeurope.org/aboutwind/statistics/european/.
  • [16] GWEC, Global Wind Energy Council, Global wind report, 2018, http://www.gwec.net.
  • [17] WE, Wind Europe, (2018). Wind in power 2018, Annual combined onshore and offshore wind energy statistics. https://windeurope.org/.
  • [18] TETC, Turkish Electricity Transmission Corporation, Electricity statistics, 2019. https://www.teias.gov.tr/.
  • [19] Abadi PRM., Daneshmand SV., Sharific R. Development and economical evaluation for wind power plant in Chabahar in Sistan and Baluchestan province-Iran, Journal of Renewable Energy and Environment JREE, 2016; 3(1): 17-24.
  • [20] Abe K., Ohya Y. An investigation of flow fields around flanged diffusers using CFD, Journal of Wind Engineering and Industrial Aerodynamics, 2004; 92: 315-330.
  • [21] Abe K., Nishida M., Sakurai A., Ohya Y., Kihara H., Wada E., Sato K. Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser, Journal of Wind Engineering and Industrial Aerodynamics 2005; 93: 951-970.
  • [22] Al-Sulaiman FA., Yilbas BS. Thermoeconomic analysis of shrouded wind turbines, Energy Conversion and Management 2015; 96: 599-604.
  • [23] Adeel A., Zaidi M., Uddin N. Numerical investigations of subsonic flow through a convergent-divergent duct with varying flange heights at exit, Proceedings of International Conference on Energy and Sustainability, Ned University of Engineering & Technology, Karachi, Pakistan, 2013; 15-19.
  • [24] Allaei D., Andreopoulos Y. INVELOX: Description of a new concept in wind power and its performance evaluation, Energy 2014; 69: 336-344.
  • [25] Allaei D., Tarnowski D., Andreopoulos Y. INVELOX with multiple wind turbine generator systems, Energy 2015, 93: 1030- 1040.
  • [26] Jamieson P. Innovation in wind turbine design. A John Wiley & Sons, Ltd., Publication, 2011
Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online)-Cover
  • ISSN: 2687-3729
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2017
  • Yayıncı: Osmaniye Korkut Ata Üniversitesi
Sayıdaki Diğer Makaleler

Passion Fruit Marmalade Recipe with and without seeds in Colombia, South America

Muhammad Farhan IQBAL, Muhammad FARHAB, Umar FAROOQ, Ayesha QADRY

Armillaria mellea ve Tricholoma cedrestorum Farklı Dozlarının İlave Edildiği Topraklarda Karbon Mineralizasyonu

Selen ÇELİK, HÜSNİYE SAĞLIKER, NACİDE KIZILDAĞ

Küçük Kapasiteli, Yatay Eksenli ve Akış Hızlandırıcılı Rüzgar Türbinlerinin Performans Analizi

Mehmet BİLGİLİ

Atık Su Arıtma Tesislerindeki Ekipmanlarda Bulunan Asenkron Motorlar ve Asenkron Motorlara Yol Verme Yöntemlerinin İncelenmesi: Gaziantep Örneği

Mustafa Mikail ÖZÇİLOĞLU, Bayram DURMUŞ

Döner Tip Rejeneratör Diferansiyel Denklemlerinin Sonlu Farklar Yöntemi ile Çözümünde En Uygun Adım Sayısının Belirlenmesi

ŞABAN ÜNAL

Bir Uygulama: Bir Beyaz Eşya Üretim Firmasının Boyahane Bölümünde Paralel Makineler için Sıraya Bağlı Kurulum Sürelerini içeren bir Model

Durdu Hakan UTKU, Selin KASIMOĞLU, Gülce DEMİR, Berrak Pınar YAZ

Çok Kriterli Karar Verme Teknikleri ile Kurumsal Kaynak Planlama Sistemi Seçimi

Burcu ALATEPELİ

An Application: A Model with Sequence Dependent Setup Times for Parallel Machines for the Die House Station in a White Goods Manufacturing Company

Selin KASIMOĞLU, Gülce DEMİR, Berrak Pınar YAZ, Durdu Hakan UTKU

Length-Weight Relationships with Condition Indices of Three Commercial Fish Species Caught by Monofilament Gillnets in the İskenderun Bay, Turkey

Burcu YEŞİLBUDAK

Organik Malç Uygulamalarının Toprağın Bazı Fiziksel Özellikleri Üzerine Etkileri

Zekeriya KARA, Sertan SESVEREN, Engin GÖNEN, Asiye KÖYLÜ