İki Tutan Bariyerli Yarı-Markovian Rastgele Yürüyüş Sürecinin Bir Sinir Fonksiyonalinin Dağılımı Hakkında

Bu çalışmada, rastgele yürüyüşün (1 ;1 )   L Laplace dağılımına sahip olması durumunda, sıfır ve  ( 0 )   seviyelerinde tutan bariyerlere sahip bir yarı-Markovian rastgele yürüyüş süreci ve bu sürecin sıfır seviyesindeki tutan bariyere ilk kez düşme anı, ( ), 0  matematiksel olarak kurulmuştur. Daha sonra 0  rastgele değişkeninin Laplace dönüşümünün açık bir ifadesi verilmiştir. Ayrıca bu Laplace dönüşümünü kullanarak, 0  rastgele değişkeninin beklenen değer ve varyansı için basit formüller elde edilmiştir. 

On the Distribution of a Boundary Functional of the Semi-Markovian Random Walk Process with Two Delaying Barriers

In this study, a process of semi-Markovian random walk with delaying barriers at 0  and   levels (   0 ) and first falling moment of the process into the delaying barrier at zerolevel, ( ) 0  , are mathematically constructed, in this case when the random walk happens according to the Laplace’s distribution (1 ;1 )   L . Then it is given an explicit expression of the Laplace transformation of the distribution of random variable 0  . Also the simple formulas for expectation and variance of random variable 0  are obtained by the means of this Laplace transformation.

___

  • 1. Borovkov, A.A., (1975). On the random walk in the strip with two delaying barriers, Math. Zametki 17, 4, 647-657
  • 2. Borovkov, A.A., , (1976). Stochastic Processes in Queueing Theory, Springer-Verlag: New York
  • 3. Feller, W., (1968). An Introduction to Probability Theory and Its Applications, Vol. I, Wiley, New York
  • 4. Khaniev, T.A., (1984). Distribution of a semi-Markovian Walk with two delay screens, Some question of the theory of stochastic processes, Collect sci. Works, Kiev, 106-113
  • 5. Khaniev, T.A., Ünver, I., (1997). The study of the level zero crossing time of a semiMarkovian random walk with delaying screen, Turkish J. of Mathematics 21, 257- 268
  • 6. Lotov, V.I,. (1991). On the asymptotic of distributions in two-sided boundary problems for random walks defined on a Markovian chain, Sib. Adv. Math. 1, №o. 3,26-51
  • 7. Maden, S., Shamilova, B.Q., (2016). The Laplace Transform of a Boundary Functional of The Semi-Markovian Random Walk Process with Two Delaying Barriers, Ordu Univ. J. Sci. Tech., 6(1), 43-53
  • 8. Maden, S., (2016). The Laplace Transform for The Ergodic Distribution of A SemiMarkovian Random Walk Process with Reflecting And Delaying Barriers, Ordu Univ. J. Sci. Tech., 6(2), 243-256
  • 9. Maden, S., (2017). On Distribution of A Semi-Markovian Random Walk Process with Two Delaying Barriers, Ordu Univ. J. Sci. Tech., 7(1) , 33-41
  • 10. Nasirova, Т. H., (1984). Processes of Semi-Markovian Random Walk, ELM, Baku
  • 11. Nasirova, T.I., and Omarova, K.K., (2007). Distribution of The Lower Boundary Functional of The Step Process of Semi-Markovian Random Walk with Delaying Barrier at Zero, Ukrainian Math. Journal,, Vol. 59, No. 7, 1010–1018
  • 12. Nasirova, T.I., and Sadikova, R.I., (2009). Laplace Transformation of the Distribution of the Time of System Sojourns within a Band, Automatic Control and Computer Sciences, Vol. 43, No. 4, 190–194
  • 13. Nasirova, T.I., and Shamilova, B.G., (2014). Investigation of Some Probabilistic Characteristics of One Class of Semi-Markovian Wandering with Delaying Screens, Automatic Control and Computer Sciences, Vol. 48, No. 2, 109–119
  • 14. Nasirova, T.I., Sadikova, R.I., and Ibaev, E.A., (2015). Determination of the Mean and Mean Square Deviations of the System Level, Automatic Control and Computer Sciences, Vol. 49, No. 1, 37–45
  • 15. Omarova, K.K., Bakhshiev, S.B., (2010). The Laplace Transform for The Distribution of The Lower Bound Functional in a Semi-Markovian Walk Process with a Delay Screen at Zero, Automatic Control and Computer Sciences, Vol. 44, No. 4, 246-252
Ordu Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • ISSN: 2146-6440
  • Yayın Aralığı: 2
  • Başlangıç: 2011
  • Yayıncı: ORDU ÜNİVERSİTESİ