İki Tutan Bariyerli Yarı-Markovian Rastgele Yürüyüş Sürecinin Bir Sinir Fonksiyonalinin Dağılımı Hakkında
Bu çalışmada, rastgele yürüyüşün
(1 ;1 )
L
Laplace dağılımına sahip olması durumunda, sıfır ve
( 0 )
seviyelerinde tutan bariyerlere sahip bir yarı-Markovian rastgele yürüyüş süreci ve
bu sürecin sıfır seviyesindeki tutan bariyere ilk kez düşme anı, ( ), 0
matematiksel olarak
kurulmuştur. Daha sonra
0
rastgele değişkeninin Laplace dönüşümünün açık bir ifadesi
verilmiştir. Ayrıca bu Laplace dönüşümünü kullanarak,
0
rastgele değişkeninin beklenen değer
ve varyansı için basit formüller elde edilmiştir.
On the Distribution of a Boundary Functional of the Semi-Markovian Random Walk Process with Two Delaying Barriers
In this study, a process of semi-Markovian random walk with delaying barriers at
0 and
levels (
0
) and first falling moment of the process into the delaying barrier at zerolevel,
( )
0
, are mathematically constructed, in this case when the random walk happens
according to the Laplace’s distribution
(1 ;1 )
L . Then it is given an explicit expression of the
Laplace transformation of the distribution of random variable
0
. Also the simple formulas for
expectation and variance of random variable
0
are obtained by the means of this Laplace
transformation.
___
- 1. Borovkov, A.A., (1975). On the random walk in the strip with two delaying barriers,
Math. Zametki 17, 4, 647-657
- 2. Borovkov, A.A., , (1976). Stochastic Processes in Queueing Theory, Springer-Verlag:
New York
- 3. Feller, W., (1968). An Introduction to Probability Theory and Its Applications, Vol. I,
Wiley, New York
- 4. Khaniev, T.A., (1984). Distribution of a semi-Markovian Walk with two delay screens,
Some question of the theory of stochastic processes, Collect sci. Works, Kiev, 106-113
- 5. Khaniev, T.A., Ünver, I., (1997). The study of the level zero crossing time of a semiMarkovian
random walk with delaying screen, Turkish J. of Mathematics 21, 257-
268
- 6. Lotov, V.I,. (1991). On the asymptotic of distributions in two-sided boundary problems
for random walks defined on a Markovian chain, Sib. Adv. Math. 1, №o. 3,26-51
- 7. Maden, S., Shamilova, B.Q., (2016). The Laplace Transform of a Boundary Functional
of The Semi-Markovian Random Walk Process with Two Delaying Barriers, Ordu Univ.
J. Sci. Tech., 6(1), 43-53
- 8. Maden, S., (2016). The Laplace Transform for The Ergodic Distribution of A SemiMarkovian
Random Walk Process with Reflecting And Delaying Barriers, Ordu Univ. J.
Sci. Tech., 6(2), 243-256
- 9. Maden, S., (2017). On Distribution of A Semi-Markovian Random Walk Process with
Two Delaying Barriers, Ordu Univ. J. Sci. Tech., 7(1) , 33-41
- 10. Nasirova, Т. H., (1984). Processes of Semi-Markovian Random Walk, ELM, Baku
- 11. Nasirova, T.I., and Omarova, K.K., (2007). Distribution of The Lower Boundary
Functional of The Step Process of Semi-Markovian Random Walk with Delaying
Barrier at Zero, Ukrainian Math. Journal,, Vol. 59, No. 7, 1010–1018
- 12. Nasirova, T.I., and Sadikova, R.I., (2009). Laplace Transformation of the Distribution of
the Time of System Sojourns within a Band, Automatic Control and Computer Sciences,
Vol. 43, No. 4, 190–194
- 13. Nasirova, T.I., and Shamilova, B.G., (2014). Investigation of Some Probabilistic
Characteristics of One Class of Semi-Markovian Wandering with Delaying Screens,
Automatic Control and Computer Sciences, Vol. 48, No. 2, 109–119
- 14. Nasirova, T.I., Sadikova, R.I., and Ibaev, E.A., (2015). Determination of the Mean and
Mean Square Deviations of the System Level, Automatic Control and Computer
Sciences, Vol. 49, No. 1, 37–45
- 15. Omarova, K.K., Bakhshiev, S.B., (2010). The Laplace Transform for The Distribution of
The Lower Bound Functional in a Semi-Markovian Walk Process with a Delay Screen
at Zero, Automatic Control and Computer Sciences, Vol. 44, No. 4, 246-252