Yer altına gömülü üç boyutlu cisimlerin bozulmuş born iteratif yöntemi ile tespit edilmesi

Bu çalışmada, yer altında gömülü üç boyutlu (3B) cisimlerin geometrik ve elektriksel özelliklerinin yer üstünden yapılan ölçümlerle belirlenmesine yönelik bir elektromanyetik ters saçılma problemi ele alınmıştır. Problemin çözümü bozulmuş born iteratif yöntemi (Distorted Born Iterative Method - DBIM) kullanılarak yapılmıştır. Hava ve toprak ortamlarını birbirinden ayıran ara yüzey yukarıdan bir elektromanyetik dalga kaynağı ile aydınlatılmış ve yine yukarıdaki bir bölge boyunca elektrik alan ölçümleri yapılmıştır. Elektromanyetik dalga kaynağı olarak peş peşe farklı geliş açılarıyla gönderilen düzlem dalgalar kullanılırken ölçümler bir düzlem boyunca birden fazla noktada alınmıştır. İlgilenilen hacimsel bir bölgede bulunan cisimlerin geometrik ve elektriksel özellikleri, bu bölgenin kompleks dielektrik sabitinin belirlenmesi sonucu ortaya çıkartılmaktadır. Sunulan yöntemin, yer altındaki rastgele geometrili üç boyutlu nesnelerin tespitindeki başarısını göstermek için çeşitli sayısal sonuçlar sunulmuştur. Elde edilen sonuçlar, bozulmuş born iteratif yönteminin düşük ve orta düzeyde kontrasta sahip cisimlerin hem geometrik hem de dielektrik özelliklerinin belirlenmesinde oldukça başarılı olduğunu ortaya koymaktadır. Yüksek kontrastlı cisimlerin ise yeri ve geometrik özellikleri başarıyla bulunurken bağıl dielektrik sabiti ve iletkenlikleri gerçek değerlerinden daha düşük seviyelerde bulunmuştur.

Reconstruction of three dimensional objects buried underground by distorted born iterative method

In this study, an electromagnetic inverse scattering problem to reveal the geometric and dielectric properties of three-dimensional (3D) objects buried underground by measuring from above is discussed. The solution of the problem is achieved by using the distorted born iterative method (DBIM). The interface separating the air and soil media is illuminated from above with an electromagnetic wave source and electric field measurements are conducted across a region above. While plane waves are used as an electromagnetic wave source, which are sent consecutively with different arrival angles, measurements are taken at more than one point along a plane. The geometric and electrical properties of objects in a volumetric region of interest are revealed by determining the complex dielectric constant of this region. Various numerical results are presented to show the success of the presented method in detecting three-dimensional objects with arbitrary geometry buried into earth. The results show that the distorted born iterative method is very successful in determining both geometric and dielectric properties of objects with low and medium contrast. While the location and geometric properties of high contrast objects are successfully found, the relative dielectric constants and conductivities are found to be lower than their real values.

___

  • [1] T. Durukan, R. E. Akdogan ve Y. Altuncu, Varyasyonel Born Iteratif yöntemi ile gömülü silindirik cisimlerin tespit edilmesi.2018 ELECO 2018 Elektrik-Elektronik ve Biyomedikal Mühendisliği Konferansı, pp 414-418 Bursa, 2018.
  • [2] Y. Altuncu, T. Durukan ve R. E. Akdogan, Reconstruction of two- dimensional objects buried into three-part space with locally rough interfaces via Distorted Born Iterative method. PIER, 23-41, 2019, doi: 10.2528/PIER19072203.
  • [3] Y. Altuncu, A numerical method of electromagnetic scattering by 3-D dielectric objects buried under 2-D locally rough surfaces, IEEE Trans Antennas Propagat., 3634-3643, 2015. doi: 10.1109/TAP.2015.2438859
  • [4] R. E. Akdogan and Y. Altuncu, Reconstruction of 3D objects buried under into half-space by using Variational Born Iterative method. 2019 23rd International Conference on Applied Electromagnetics and Communications (ICECOM), pp 1-4, Dubrovnik, Croatia, 2019.
  • [5] R. Pierri and G. Leone, Inverse scattering of dielectric cylinders by a second-order Born approximation, IEEE Trans. Geosci. Remote Sensing, 37, 1, 374-382, 1999. doi: 10.1109/36.739072.
  • [6] R. Lavarello and M. Oelze, A study on the reconstruction of moderate contrast targets using the distorted born iterative method, IEEE Trans. Ultrason., Ferroelect., 55, 1, 112-124, 2008. doi: 10.1109/TUFFC.2008.621.
  • [7] A. J. Hesford and W. C. Chew, Fast inverse scattering solutions using the distorted Born iterative method and the multilevel fast multipole algorithm, The Journal of the Acoustical Society of America, 128, 2, 679-690, 2010. doi: 10.1121/1.3458856.
  • [8] H. Tu, W, Chien, C. C. Chiu and T. M. Hu, Comparison of two different shape descriptions in the half-space inverse problem, SBMO/IEEE MTT- S International Conference on Microwave and Optoelectronics, pp 158- 161 2005. Brasil, 2005. doi: 10.1109/IMOC.2005.1579985.
  • [9] S. F. Mahmoud, S. M. Ali and J. R. Wait, Electromagnetic scattering from a buried cylindrical inhomogeneity inside a lossy earth, Radio Sci., 16, 6, 1285-1298, 1981. doi: 10.1029/RS016i006p01285.
  • [10] F. Delbary, K. Erhard, R. Kress, R. Potthast ve J. Schulz, Inverse electromagnetic scattering in a two-layered medium with an application to mine detection. Inverse Problems, 24, 1, 015002, 2008. doi: 10.1088/ 0266-5611/24/1/015002.
  • [11] J. Hadamard, Lectures on chauchy’s Problem in linear Partial Differential Equations, Yale University Press, New Haven, 1923.
  • [12] Y. Liu and L. R. Ciric, An improved iterative method for inverse scattering, Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, pp 1656-1659 Seattle, USA, 1994. doi: 10.1109/APS.1994.408133.
  • [13] X. Chen, Computational methods for electromagnetic inverse scattering, John Wiley & Sons Singapore Pte. Ltd. 2018.
  • [14] W. C. Chew and Y. M. Wang, Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. IEEE Trans. Med. Imaging, 9, 218-225, 1990. doi: 10.1109/42.56334.
  • [15] F. Li, Q. H. Liu and L.-P. Song, Three-dimensional reconstruction of objects buried in layered media using Born and Distorted Born Iterative Methods, IEEE Geosci. Remote Sensing Lett., 1, 2, 107-111, 2004. doi: 10.1109/LGRS.2004.826562.
  • [16] Y. Altuncu, F. Akleman, O. Semerci and C. Ozlem, Imaging of dielectric objects buried under a rough surface via distorted born iterative method, J. Phys.: Conf. Ser., 2008, doi: 10.1088/1742- 6596/135/1/012006.
  • [17] N. Zaiping, Y. Feng, Z. Yanwen and Z. Yerong, Variational Born iteration method and its applications to hybrid inversion, IEEE Trans. Geosci. Remote Sensing, 38, 1709-1715, 2000. doi: 10.1109/36.851969.
  • [18] P. Berg and A. Abubakar, Contrast source inversion method: State of art, PIER, 189-218,2001. doi: 10.2528/PIER01061103.
  • [19] X. Ye and X. Chen, Subspace-based Distorted Born iterative method for solving Inverse scattering problems, IEEE Trans. Antennas Propagat., 7224-7232, 2017. doi: 10.1109/TAP.2017.2766658.
  • [20] N. Kinayman and M. I. Aksun, Modern Microwave Circuits, Artech House, 2005
  • [21] W. C. Chew., Waves and fields in inhomogenous media, IEEE Press Series on Electromagnetic Waves, 1990.
  • [22] R. E. Akdoğan., İki parçalı uzaya gömülü üç boyutlu cisimlere ilişkin ters saçılma probleminin Born yaklaşımı tabanlı ve kontrast kaynak tabanlı yöntemlerle çözümü. Yüksek Lisans Tezi, Niğde Ömer Halisdemir Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2020.
  • [23] W.E. Patitz, B.C. Brock, E. G. Powell., “Measurement of Dielectric and Magnetic Properties of Soil”, Sand1a report sand95-2419,UC-706 Unlimited Release 1995
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi