Sızıntı suyundan foto-elektro-Fenton yöntemi ile KOİ ve Renk giderimi üzerine akım yoğunluğu ve pH etkisi

Sızıntı suları yüksek düzeylerde organik ve inorganik kirleticiler içermekte, sızma ve/veya yüzeysel akış ile yeraltı sularına ve yüzeysel sulara karışarak çevre ve insan sağlığı açısından tehlike oluşturabilmektedir. Bu çalışmada, sızıntı sularının arıtımı ve deşarjında önemli parametrelerden olan KOİ ve rengin foto-elektro-Fenton yöntemi ile giderimi çeşitli işletme koşulları altında araştırılmıştır. Arıtma ve maliyet sürecinde önemli olan işletme parametreleri belirlenerek optimize edilmiştir. Sızıntı suyundan foto-elektro-Fenton yöntemi ile KOİ ve renk giderimi üzerine akım yoğunluğu (10-50 A/m2) ve pH (2.5-5.0) etkileri incelenmiştir. Optimum deneysel koşullar için (pH: 3, akım yoğunluğu: 10 A/m2) maksimum %79.75 KOİ (90 dakika) ve %80.57 renk (45 dakika) giderim verimleri 11.02 ve 5.50 kWh/m3 elektrik enerjisi tüketimleri ile elde edilmiştir. Bu sonuçlar, sızıntı suyundan KOİ ve renk giderimi üzerine foto-elektro-Fenton yönteminin başarı ile uygulanabileceğini göstermiştir.

The effect of current density and pH on COD and color removal from leachate by the photo-electro-Fenton method

Leachate contain high levels of organic and inorganic pollutants, and may cause danger to the environment and human health by mixing with groundwater and surface waters by infiltration and/or runoff. In this study, the removals of COD and color, which are important parameters for the treatment and discharge of leachate, by photo-electro-Fenton method, was investigated under various operating conditions. Operational parameters that are important for the treatment and cost processes were determined and optimized. The effects of current density (10-50 A/m2) and pH (2.5-5.0) on COD and color removal from the leachate by photo-electro-Fenton method were investigated. For optimum experimental conditions (pH: 3, current density: 10 A/m2) maximum 79.75% COD (90 minutes) and 80.57% color (45 minutes) removal efficiencies were obtained with 11.02 and 5.50 kWh/m3 electrical energy consumption. These results showed that the photo-electro-Fenton method can be successfully applied on COD and color removal from leachate.

___

  • [1] E. Atmaca, Treatment of landfill leachate by using electro- Fenton method, J. Hazard. Mater, 163, 109-114, 2009. https://doi.org/10.1016/j.jhazmat.2008.06 .067.
  • [2] T.A. Kurniawan, W.-h. Lo, G.Y.S. Chan, Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate, J. Hazard. Mater, 129, 80-100, 2006. https://doi.org/10.1016/j.jhazmat. 2005.08.010.
  • [3] S.M. Raghab, A.M. Abd El Meguid, H.A. Hegazi, Treatment of leachate from municipal solid waste landfill, HBRC J, 9, 187-92, 2013. https://doi.org/ 10.1016/j.hbrcj.2013.05.007.
  • [4] S. Renou, J.G. Givaudan, S. Poulain, F. Dirassouyan, P. Moulin, Landfill leachate treatment: review and opportunity, J. Hazard. Mater, 150, 468- 93, 2008. https://doi.org/10.1016/j.jhazmat.2007.09.077.
  • [5] Y. Deng, J.D. Englehardt, Treatment of landfill leachate by the Fenton process, Water Res, 40, 3683–94, 2006. https://doi.org/10.1016/j.watres.2006.08.0 09.
  • [6] S.K.A. Solmaz, A. Birgul, G.E. Ustun, T. Yonar, Colour and COD removal from textile effluent by coagulation and advanced oxidation processes, Coloration Technology, 122, 102-09, 2006. https://doi.org/10.1111/j.1478-4408.2006.00016.X.
  • [7] P.H. Sreeja, K.J. Sosamony, A comparative study of homogeneous and heterogeneous photo-Fenton process for textile wastewater treatment, Procedia Technology, 24, 217-223, 2016. https://doi.org/10.1016/j.protc y.2016.05.065.
  • [8] A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering , 2, 557-572, 2014. https://doi.or g/10.1016/ j.jece.2013.10.011.
  • [9] S.F. Kang, C.H. Liao, S.T. Po, Decolorization of textile wastewater by photo-Fenton oxidation technology, Chemosphere, 41, 1287-94, 2000. https://doi.org/ 10.1016/S0045-6535(99)00524-X.
  • [10] M. Galehdar, H. Younesi, M. Hadavifar, A.A. Zinatizadeh, Optimization of a photo-assisted Fenton oxidation process: A statistical model for MDF effluent treatment, Journal of Clean, 37, 629- 37, 2009. https://doi.org/10.1002/clen.200900052.
  • [11] P. Asaithambi, R. Govindarajan, M.B. Yesuf, E. Alemayehu, Removal of color, COD and determination of power consumption from landfill leachate wastewater using an electrochemical advanced oxidation processes, Separation and Purification Technology, 233, 2020. https://doi.org/10.1016/j.seppu r.2019.115935.
  • [12] M. Panizza, C.A. Martinez-Huitle, Role of electrode materials for the anodic oxidation of a real landfill leachate-comparison between Ti- Ru-Sn ternary oxide, PbO2 and boron doped diamond anode, Chemosphere, 90, 1455-1460, 2013. https://doi.org/10.1016/j.ch emosphere.2012.09.006.
  • [13] E.W. Rice, R.B. Baird, A.D. Eaton, and L.L. Bridgewater, Standard Methods in Examination of Water and Wastewater, twenty-three ed. Water Environment Federation, American Public Health Association, Washinghton DC, 2012.
  • [14] H. Zhang, D. Zhang, J. Zhou, Removal of COD from landfill leachate by electro-Fenton method, Journal of Hazardous Materials, 135, 106-11, 2006. https://doi.or g/10.1016/j.jhazmat.2005.11.025.
  • [15] A. Altin, An alternative type of photo-electro-Fenton process for the treatment of landfill leachate, Separation and Purification Technology, 61, 391-97, 2008. https://doi.org/10.1016/j.seppur.2007.12.004.
  • [16] U. Bali, E. Catalkaya, F. Sengul, Photodegradation of Reactive Black 5, Direct Red 28 and Direct Yellow 12 using UV, UV/H2O2 and UV/H2O2/Fe2+ : a comparative study, Journal of Hazardous Materials, 114, 159-66, 2004. https://doi.org/10.1016/j.jhazmat.2004.08.013.