NANO SİLİKA KÜR UYGULAMASININ ÇİMENTO BAĞLAYICILI KOMPOZİTLERİN DONMA-ÇÖZÜLME DİRENCİ ÜZERİNE ETKİSİNİN ARAŞTIRILMASI

   Bu çalışmada nano silica solüsyonunda kür etkisine maruz bırakılan çimento bağlayıcılı kompozitlerin (ECC), donma-çözülme döngüleri gibi ağır çevresel koşullar altında gösterdikleri direnç araştırılmıştır. Bu amaçla iki farklı tip uçucu kül iki farklı oranda kullanılarak dört farklı karışım olarak hazırlanan ECC numuneleri, ASTM C666 ProsedürA’ya uygun olarak 300 donma-çözülme döngüsüne maruz bırakılmıştır. Numunelerin mekanik özelliklerindeki değişimler basınç ve eğilme testleri ile, fiziksel özelliklerindeki değişimler ise, 30 çevrimde bir ağırlıklarının ölçülmesi ile belirlenmiştir. Çalışma neticesinde elde edilen sonuçlar, çimento bağlayıcılı kompozitlerde nano silica (NS) kür uygulamasının, zorlayıcı çevresel koşullar altında numunelerin dayanım ve dayanıklılık gibi özelliklerinde suda kür uygulamasına göre kayda değer artışlar sergilediğini göstermiştir. 

INVESTIGATION OF THE EFFECT OF NANO-SILICA CURING ON THE FREEZE-THAW RESISTANCE OF CEMENTITIOUS COMPOSITES

   In this study, the resistance of cementitious composites (ECC) exposed to the curing effect in nano-silica solution under heavy environmental conditions such as freeze-thaw cycles is investigated. For this purpose, ECC samples prepared as four different mixtures using two different types of fly ash in two different ratios were subjected to 300 freeze-thaw cycles in accordance with ASTM C666 Procedure A.The changes in the mechanical properties of the samples were tested with compressive and bending tests, changes in the physical properties of the samples were determined by measuring their weights in every 30 cycles. The results of the study showed that nano-silica curing in cementitious composites exhibit remarkable increases in the properties such as strength and durability of the samples even under challenging environmental conditions compared to water curing.

___

  • [1] LI, V.C., “ECC-tailored composites through micromechanical modeling”, Fiber reinforced concrete: present and the future, In: Banthia N, et al., editors. CSCE, Montreal, QC, Canada, 64–97, 1998.
  • [2] LI, V.C., WANG, S., WU, C., “Tensile strain-hardening behavior of PVA–ECC”, ACI Mater J, 98:483–92, 2001.
  • [3] LI, V.C., “On engineered cementitious composites (ECCs) – a review of the material and its applications”, Journal of Adv Concr Technol, 1(3), 215–230, 2003.
  • [4] ŞAHMARAN, M., LI, V.C., “De-icing salt scaling resistance of mechanically loaded engineered cementitious composites”, Cem Concr Res, 37, 1035–1046, 2007.
  • [5] LI, M., ŞAHMARAN, M., LI, V.C., “Effect of cracking and healing on durability of engineered cementitious composites under marine environment”, High performance fiber reinforced cement composites (HPFRCC-5), Mainz, Germany, July 10–13, 2007.
  • [6] ŞAHMARAN, M., LI, V.C., LI, M., “Transport properties of engineered cementitious composites under chloride exposure”, ACI Mater J,104, 604–611, 2007.
  • [7] ŞAHMARAN, M., LI, V.C., “Durability of mechanically loaded engineered cementitious composites under high alkaline environment”,. Cem Concr Comps, 30, 72–81, 2008.
  • [8] ŞAHMARAN, M, LI, V.C., ANDRADE, C., “Corrosion resistance performance of steelreinforced engineered cementitious composite beams”, ACI Mater J, 105, 243–250, 2008.
  • [9] ŞAHMARAN, M., LI, V.C., “Influence of microcracking on water absorption and sorptivity of ECC”, Mater Struct, 42, 593–603, 2009.
  • [10] LI, V. C., “Reflections on the research and development of engineered cementitious composites (ECC)”, Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)- Aplication and Evaluation, October, 2002.
  • [11] ŞAHMARAN, M., YILDIRIM, G., ERDEM, T.K., “Self-healing capability of cementitious composites incorporating different supplementary cementitious materials”, Cement Concrete Composites, 35, 89-101, 2013.
  • [12] GARCIA CALVO, J. L., PEREZ, G., CARBALLOSA, P., ERKIZIA, E., GAITERO J. J., GUERRERO, A., “Development of ultra-high performance concretes with self-healing micro/nano-additions”, Construction and Building Materials, 138, 306-315, 2017.
  • [13] BERRA, M., CARASSİTİ, F., MANGİALARDİ, T., PAOLİNİ, A. E., SEBASTİANİ, M., “Effects of nanosilica addition on workability and compressive strength of Portland cement pastes”, Construction and Building Materials, 35, 666-675, 2012.
  • [14] GIVI A, N., RASHID, S. A., AZIZ, F. N. A., SALLEH, M. A. M., “The effects of lime solution on the properties of SiO2 nanoparticles binary blended concrete”, Composites: Part B, 42, 562-569, 2011.
  • [15] YEŞİLMEN, S., AL-NAJJAR, Y., BALAV, M. H., ŞAHMARAN, M., YILDIRIM, G., LACHEMİ, M., “Nano-modification to improve the ductility of cementitious composites”, Cem. Concr. Res., 76, 170-179, 2015.
  • [16] BENTZ, D.P., SALO, T., DE LA VARGA, I., WEISS, W.J., “Fine limestone additions to regulate setting in high volume fly ash mixtures”, Cem. Concr. Compos., 34, 11–17, 2012.
  • [17] AKKAYA, Y., PELED, A., SHAH, S.P., “Parameters related to fiber length and processing in cementitious composites”, Mater. Struct., 33, 515–524, 2000.
  • [18] FELEKOĞLU B., FELEKOĞLU K. T., KESKİNATEŞ M., GÖDEK E., “A comparative study on the compatibility of PVA and HTPP fibers with various cementitious matrices under flexural loads”, Construction and Building Materials, 121, 423-428, 2016.
  • [19] COLLEPARDI, M., COLLEPARDI, S., SKARP, U., TROLİ, R., “Optimization of silica fume, fly ash and amorphous nano-silica in superplasticized high-performance concrete”, ACI Spec. Publ., 221, 495–505, 2004.
  • [20] GAITERO, J. J., CAMPILLO, I., GUERRERO, A., “Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles”, Cem. Concr. Res., 38(8–9), 1112–1118, 2008.
  • [21] KAWASHIMA, S., KIM, J. H., CORR, D. J., SHAH, S. P., “Study of the mechanisms underlying the fresh-state response of cementitious materials modified with nanoclays”, Constr. Build. Mater., 36, 749–757, 2012.
  • [22] NAZARI, A., RIAHI, S., “The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete”, Compos. Part B Eng., 42(3), 570–578, 2011.
  • [23] JALAL, M., FATHI, M., FARZAD, M., “Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete”, Mech. Mater., 61, 11–27, 2013.
  • [24] MADANDOUST, R., MOHSENI, E., MOUSAVI, S. Y., NAMNEVIS, M., “An experimental investigation on the durability of selfcompacting mortar containing nano-SiO2, nano-Fe2O3 and nano-CuO”, Constr. Build. Mater., 86, 44–50, 2015.
  • [25] HOU, P., KAWASHIMA, S., WANG, K., CORR, D. J., QIAN, J., SHAH, S. P., “Effects of colloidal nanosilica on rheological and mechanical properties of fly ash–cement mortar”, Cement and Concrete Composites, 35(1), 12-22, 2013.