DÜŞÜK KARBONLU GRADE A ÇELİĞİNİN EŞ KANALLI AÇISAL EKSTRÜZYON YÖNTEMİ İLE PROSES EDİLMESİ

Bu çalışmada eş kanallı açısal ekstrüzyon (EKAE) işleminin düşük karbonlu çeliğin mikroyapısal ve mekanik özellikleri ile darbe enerjisi üzerine etkilerinin incelenmesi amaçlanmıştır. Bu amaçla düşük karbonlu Grade A çeliği, (EKAE) işlemine tabi tutulmuştur. 1 pasoluk EKAE işlemi çeliğin tane yapısında önemli bir incelmeye neden olmazken, EKAE numunesinin akma ve dik kesit düzlemlerinde iki farklı mikroyapı oluşumunu beraberinde getirmiştir. Akış düzleminde ekstrüzyon doğrultusu ile 45° açı yapacak şekilde yönlenmiş ferrit ve perlit tanelerinden oluşan mikroyapının, dik kesit düzlemi üzerinde neredeyse eş eksenli tanelerden oluştuğu belirlenmiştir. EKAE numunesinin iki farklı düzleminin mikroyapıları arasındaki bu farklılık, EKAE işlemi sırasında aktif olan kayma düzlemleri ile açıklanmıştır. EKAE işlemi sırasında mikroyapıdaki dislokasyon yoğunluğundaki artıştan dolayı çeliğin sertlik ve dayanım değerlerinin önemli ölçüde arttığı görülmüştür. Ancak, EKAE işlemi kopma uzaması değerinin önemli ölçüde azaltmasına neden olmuştur. EKAE işlemine tabi tutulan numunenin darbe enerjisinin, Charpy darbe testi numunesinin çentik pozisyonuna bağlı olduğu belirlenmiştir.

PROCESSING OF GRADE A LOW CARBON STEEL BY EQUAL CHANNEL ANGULAR PRESSING

The present study aims to analyze the effect of equal channel angular pressing (ECAP) on the microstructural and mechanical properties as well as the impact energy of low carbon steel. Grade A steel was processed using ECAP. One pass of ECAP did not cause a considerable decrease in the grain size of the steel. It brought about two different microstructures on the flow andtransverse planes of an ECAP billet, instead. The microstructure consists of elongated ferrite and perlite grains aligned in a direction having mainly 45° angle with the extrusion direction on the flow plane while nearly equiaxed grains were formed on the transverse plane. These differences between the microstructures of two different planes of the ECAP sample are attributedto the share planes that are operative during ECAP. ECAP increased the hardness and strength values of the steel significantly due to the increase in the dislocation density during the process. However, it decreased the elongation to failure considerably. It was found that the impact energy of the ECAP-processed sample is dependent on the notch position of the Charpy impact test sample.

___

  • [1] H.F. Lampman, G.M. Crankovic, S.R. Lampman and T.B. Zorc, ASM Handbook, vol. 1: Properties and Selection: Irons, Steels and High-Performance Alloy. Ohio: ASM International, 1990.
  • [2] D.M. Sekban, S.M. Aktarer, H. Zhang, P. Xue, Z.Y. Ma and G. Purcek, “Microstructural and Mechanical Evolution of a Low Carbon Steel by Friction Stir Processing,” Metallurgical and Materials Transactions A, Aug., vol. 48, no. 8, pp. 3869–3879, 2017.
  • [3] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski and A. Yanagida, “Severe plastic deformation (SPD) processes for metals,” CIRP Annals - Manufacturing Technology, vol. 57, no. 2, pp. 716–735, 2008.
  • [4] Y. T. Zhu, T.C. Lowe and T. G. Langdon, “Performance and applications of nanostructured materials produced by severe plastic deformation,” Scripta Materialia, Oct., vol 51, no. 8, pp. 825–830, 2004.
  • [5] R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Progress in Materials Science, vol. 45, no. 1-4, pp. 103-189, 2000.
  • [6] T.G. Langdon, “The principles of grain refinement in equal-channel angular pressing,” Materials Science and Engineering A, Jol., vol. 462, no. 1-2, pp. 3–11, 2007.
  • [7] R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Progress in Materials Science, Sep., vol. 51, no. 7, pp. 881–981, 2006.
  • [8] O. Saray, G. Purcek, I. Karaman, T. Neindorf and H. J. Maier, “Equal-channel angular sheet extrusion of interstitialfree (IF) steel: Microstructural evolution and mechanical properties,” Materials Science and Engineering A, Aug., vol. 528, no. 21, pp. 6573–6583, 2011.
  • [9] A. P. Zhilyaev and T. G. Langdon, “Using high-pressure torsion for metal processing: Fundamentals and applications,” Progress in Materials Science, Aug., vol. 53, no. 6, pp. 893–979, 2008.
  • [10] Z. Y. Ma, “Friction Stir Processing Technology: A Review,” Metallurgical and Materials Transactions A, Mar. vol. 39, no. 3, pp. 642-658, 2008.
  • [11] R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Materials Science and Engineering R, Aug. vol. 50, no. 1-2, pp. 1–78, 2005.
  • [12] Y. Fukuda, K. Oh-Ishi, Z. Horita and T.G. Langdon, “Processing of a low-carbon steel by equal-channel angular pressing,” Acta Materialia, Apr. vol. 50, no. 6, pp. 1359–1368, 2002.
  • [13] C. S. Kondaveeti, S. P. Sunkavalli, D. Undi, L. V. H. Kumar, , K. Gudimetla and B. Ravisankar, “Metallurgical and Mechanical Properties of Mild Steel Processed by Equal Channel Angular Pressing (ECAP),” Transactions of the Indian Institute of Metals, Jan., vol. 70, no. 1, pp 83–87, 2017.
  • [14] D. H. Shin and K-T. Park, “Ultrafine grained steels processed by equal channel angular pressing,” Materials Science and Engineering A, Nov., vol. 410–411, pp. 299–302, 2005.
  • [15] J. Kim, I. Kim and D. H. Shin, “Development of deformation structures in low carbon steel by equal channel angular pressing,” Scripta Materialia, Aug., vol. 45, no. 4, pp. 421-426, 2001.
  • [16] D. J. Eyres, Ship Construction (5th Ed.). Oxford: Butterworth-Heinemann, 2001.
  • [17] Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto and T. G. Langdon, “Microstructural characteristics of ultrafinegrained aluminum produced using equal-channel angular pressing,” Metallurgical and Materials Transactions A, Sep., vol. 29, no. 9, pp. 2245-2252, 1998.
  • [18] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, “The shearing characteristics associated with equal-channel angular pressing,” Materials Science and Engineering A, Dec., vol. 257, no. 2, pp. 328–332, 1998.
  • [19] D. M. Sekban, S. M., Aktarer, P. Xue, Z. Y. Ma and G. Purcek, “Impact toughness of friction stir processed low carbon steel used in shipbuilding,” Materials Science & Engineering A, Aug., vol. 672, pp. 40–48, 2016.