YALITIMLI FOTOVOLTAİK CAM: OPTİK, AKUSTİK, ISIL VE ELEKTRİK ÜRETİM PERFORMANSI

Bu çalışmada, benzersiz bir fotovoltaik (PV) cam konsepti, ısı yalıtımlı PV cam (TRPVG), tanıtılmakta ve enerji üretimi, ısıl, optik ve akustik performans parametreleri deneysel olarak incelenmektedir. Literatürde yapılan çalışmalarda, yenilikçi bir yapı elemanı olarak TRPVG’nin yüksek ısıl direnç, kendi kendini temizleyebilme ve rekabetçi maliyet gibi çok fonksiyonlu faydalarına işaret edilmektedir. Mevcut araştırmanın kapsamı içerisinde, gelen güneş ışığının UVC ve UVA kısımlarının soğurulması, görünür ışık geçirgenliği ve ısıl radyasyonun kontrolü, farklı gürültü seviyelerinin azaltılması, elektrik üretim performansı ve solar cam boyunca sıcaklık farkı kapsamlı olarak analiz edilmektedir. Testler Nisan 2019’da ısıl direnç için argon gazının PV hücrelerin arkasında 16 mm kalınlığındaki bir boşluğu doldurduğu ve konstrüksiyonun gerisinde düşük emisyonlu kaplamalı ısıl dirençli yenilikçi bir cam ile desteklenen özellikli bir numune için (TRPVG-Ar16) yapılmıştır. Sonuçlar ilk bakışta TRPVG-Ar16’nın iyi bir ısıl yalıtıcı olduğunu göstermiştir. Ön ve arka yüzeyler arasındaki ortalama sıcaklık farkı gelen güneş ışınımının güçlü bir fonksiyonu olarak 16.59 °C ve ümit verici bulunmuştur. Test süresi boyunca ortalama güneş ışınımı 527.6 W/m2 olarak ölçülmüş ve PV camın arkasında ilgili değer 41.6 W/m2 olarak bulunmuştur. Benzer bir eğilim görünür ışık geçirgenliği için gözlenmiştir. TRPVG-Ar16’nın ön ve arkasındaki ortalama ışık yoğunluğu sırasıyla 622.3 ve 75.4 lx olarak rapor edilmiştir. UVC ve UVA ölçümlerine göre TRPVG-Ar16, gelen güneş ışığının UV kısmının %100’ünü bloke etme kapasitesine sahip olup bu durum dikkat çekicidir. Farklı gürültü seviyelerinde yürütülen testler ayrıca göstermektedir ki TRPVG-Ar16 ümit verici bir gürültü emicidir. Simülasyon ortamının dışında gürültü seviyesi 84.3 dBA olarak ölçülürken, iç ortam için bu değer 56.5 dBA’dır ki bu durum dBA değerinde yaklaşık %32.9’lük bir azalmaya karşılık gelmektedir.

HEAT INSULATIVE PHOTOVOLTAIC GLASS: OPTICAL, ACOUSTIC, THERMAL AND ELECTRICITY PRODUCTION PERFORMANCE

In this communication, a unique photovoltaic (PV) glass concept, heat insulative PV glass (TRPVG), is introduced, and its energy production, thermal, optical and acoustic performance parameters are experimentally investigated. In the previous literature works, multifunctional benefits of TRPVG as a novel building element such as high thermal resistance, self-cleaning and competitive cost are addressed. Within the scope of the present research, absorption of UVC and UVA part of incoming sunlight,control of visible light transmittance and solar thermal radiation, reduction of different noise levels, electricity production performance and temperature difference throughout the solar glass are comprehensively analysed. The tests are conducted in April 2019 for a specific sample (TRPVG-Ar16) in which argon gas fills a 16 mm thick gap at the rear of PV cells for thermal resistance, and a novel low-e coated thermally resistive glass is reinforced behind the structure. The results reveal that TRPVGAr16 is a very good thermal insulator at first glance. The average temperature difference between front and back surfaces isdetermined to be 16.59 °C, which is promising and a strong function of incoming solar radiation. The average solar radiation is measured to be 527.6 W/m2 during the test period, and the aforesaid value behind the PV glazing is found to be 41.6 W/m2. A similar tendency is observed for the visible light transmittance. Average light intensity measurements from the front and back of TRPVG-Ar16 are reported to be 622.3 and 75.4 lx, respectively. UVC and UVA measurements reveal that the novel TRPVGAr16 technology is capable of blocking 100% of UV part of incoming sunlight, which needs to be noted. The tests carried out for various noise levels also demonstrate that TRPVG-Ar16 is a promising noise absorber. Outside the simulation environment, the noise level is measured to be 84.3 dBA while it is 56.5 dBA for the indoor, which corresponds to about 32.9% reduction in dBA value.

___

  • [1] K. Amasyali, and N. M. El-Gohary, “A review of data-driven building energy consumption prediction studies,” Renewable and Sustainable Energy Reviews, vol. 81, Jan., pp. 1192-1205, 2018.
  • [2] M. Volf, A. Lupisek, M. Bures, J. Novacek, P. Hejtmanek, and J. Tywoniak, “Application of building design strategies to create an environmentally friendly building envelope for nearly zero-energy buildings in the central European climate,” Energy and Buildings, vol. 165, Apr., pp. 35-46, 2018.
  • [3] S. Grynning, A. Gustavsen, B. Time, and B. P. Jelle, “Windows in the buildings of tomorrow: energy losers or energy gainers?” Energy and Buildings, vol. 61, Jun., pp. 185-192, 2013.
  • [4] E. Cuce, “Development of innovative window and fabric technologies for low-carbon buildings,” Ph.D. Thesis, The University of Nottingham, Nottingham, United Kingdom, 2014.
  • [5] E. Cuce, “Toward multi-functional PV glazing technologies in low/zero carbon buildings: Heat insulation solar glass -Latest developments and future prospects,” Renewable and Sustainable Energy Reviews, vol. 60, Jul., pp. 1286-1301,2016.
  • [6] G. Gorgolis, and D. Karamanis, “Solar energy materials for glazing technologies,” Solar Energy Materials and Solar Cells, vol. 144, Jan., pp. 559-578, 2016.
  • [7] E. Cuce, “Impacts of edge seal material on thermal insulation performance of a thermally resistive photovoltaic glazing (TRPVG): CFD research with experimental validation,” Journal of Energy Systems, vol. 3, no. 1, pp. 26-35, 2019.
  • [8] A. Ghosh, S. Sundaram, and T. K. Mallick, “Investigation of thermal and electrical performances of a combined semitransparent PV-vacuum glazing,” Applied Energy, vol. 228, Oct., pp. 1591-1600, 2018.
  • [9] A. Ghosh, and B. Norton, “Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings,” Renewable Energy, vol. 126, Oct., pp. 1003-1031, 2018.
  • [10] N. Skandalos, and D. Karamanis, “PV glazing technologies,” Renewable and Sustainable Energy Reviews, vol. 49, Sep., pp. 306-322, 2015.
  • [11] H. M. Lee, J. H. Yoon, S. C. Kim, and U. C. Shin, “Operational power performance of south-facing vertical BIPV window system applied in office building,” Solar Energy, vol. 145, Mar., pp. 66-77, 2017.
  • [12] B. Norton, P. C. Eames, T. K. Mallick, M. J. Huang, S. J. McCormack, J. D. Mondol, and Y. G. Yohanis, “Enhancing the performance of building integrated photovoltaics,” Solar Energy, vol. 85, Aug., pp. 1629-1664, 2011.
  • [13] E. Cuce, C. H. Young, and S. B. Riffat, “Thermal insulation, power generation, lighting and energy saving performance of heat insulation solar glass as a curtain wall application in Taiwan: A comparative experimental study,” Energy Conversion and Management, vol. 96, May., pp. 31-38, 2015.
  • [14] E. Cuce, and S. B. Riffat, “A state-of-the-art review on innovative glazing technologies,” Renewable and Sustainable Energy Reviews, vol. 41, Jan., pp. 695-714, 2015.
  • [15] C. M. Lai, and S. Hokoi, “Solar facades: A review,” Building and Environment, vol. 91, Sep., pp. 152-165, 2015.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi