Biyomedikal Uygulamalar İçin Titanyum Esaslı Gözenekli TiNb Alaşımının Üretimi

Titanyum esaslı alaşımların biyomalzeme olarak kullanımını yaygınlaştırmak için son yıllarda gözenekli implant malzeme olarak üretimi ve uygulanması üzerine yoğun çalışmalar yapılmaktadır. Ti-esaslı alaşımlar yüksek korozyon direnci, düşük elastik modülü ve üstün biyouyumluluğu nedeniyle medikal uygulamalarda yaygın olarak kullanılmaktadır. Bu tür alaşımlar özellikle sert doku implantları olarak tercih edilmektedirler. Alaşım gözenekli malzeme olarak üretildiği zaman vücut içerisinde canlı dokunun ilerlemesine, kan ve besin taşınmasına imkan sağlayacağı ve kemik ile iyi bir bağ oluşturacağı bir gerçektir. Bu nedenle bu çalışmada, yüksek saflıkta element tozları kullanılarak titanyum esaslı TiNb alaşımı üretildi. Üretilen numunelerin mikroyapılarında, başlıca α fazına ilaveten β ve α" fazların da varlığı tespit edildi. Soğuk presleme basıncının artmasıyla gözenek oranının azaldığı, basma dayanımlarının arttığı görüldü. Üretilen numuneler mikroyapıları ve basma dayanımları açısından ideal bir implant malzemesi olarak kullanılabileceği anlaşıldı.
Anahtar Kelimeler:

TiNb, Toz metalurjisi

Production of Titanium Based Porous TiNb Alloy for Biomedical Applications

In recent years, intensive studies have been carried out on the production and application of titanium-based alloys as porous implant materials in order to promote the use of titanium-based alloys as biomolecules. Ti-based alloys are widely used in medical applications due to their high corrosion resistance, low elastic modulus and superior biocompatibility. Such alloys are especially preferred as hard tissue implants. When the alloy is produced as a porous material it is essential that it will allow the passage of live tissue through the body, allowing blood and nutrient transport, and a good bond with the bone. For this reason, pure titanium and titanium-based Ti-10Nb alloy was produced in this work using high purity elemental powders. After the production, the pure titanium structure consisted entirely of α phase, while in the structure of the Ti-10Nb alloy, β and α" phases were detected in addition to α phase. It was determined that the porosity ratio of Ti-10Nb alloy is higher than that of pure titanium specimen and the elastic modulus is closer to bone structure. It was understood that Ti-10Nb specimen produced would be more suitable as an ideal implant material in terms of microstructure and compressive strength.

___

  • [1] X. Wang, Y. Chen, L. Xu, Z. Liu, K.D. Woo., Effects of Sn content on the microstructure, mechanical properties and biocompatibility of Ti–Nb–Sn/hydroxyapatite biocomposites synthesized by powder metallurgy, Materials and Design 49 (2013)511–519.
  • [2] A. Biesiekierski, J. L., Y. Li, D. Ping, Y. Yamabe-Mitarai, C. Wend., Investigations into Ti–(Nb,Ta)–Fe alloys for biomedical applications, Acta Biomaterialia 32 (2016) 336–347.
  • [3] V. A. R. Henriques, C. E. Bellinati, C. R. M. da Silva., production of Ti-6%Al-7%Nb alloy by powder metallurgy (P/M), Journal of Materials Processing Technology 118 (2001) 212-215.
  • [4] M. C. Bottino, P. G. Coelho, V. A. R. Henriques, O. Z. Higa, A. H. A. Bressiani, J. C. Bressiani., Processing, characterization, and in vitro/in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr alloys, Published online 11 March 2008 in Wiley InterScience, DOI: 10.1002/jbm.a.31912.
  • [5] D. Zhao, K. Chang, T. Ebel, H. Nie, R. Willumeit, F. Pyczak., Sintering behavior and mechanical properties of a metal injection molded Ti–Nb binary alloy as biomaterial, Journal of Alloys and Compounds 640(2015), 393–400.
  • [6] C. S. S. de Oliveira, S. Griza, M. V. de Oliveira, A. A. Ribeiro, M. B. Leite., Study of the porous Ti35Nb alloy processing parameters for implant applications, Powder Technology 281 (2015) 91–98.
  • [7] M.K. Han, J.Y. Kim, M.J. Hwang, H.J. Song and Y.J. Park., Effect of Nb on the Microstructure, Mechanical Properties, Corrosion Behavior, and Cytotoxicity of Ti-Nb Alloys, Materials, 8, 5986-6003; doi:10.3390/ma80952872015.
  • [8] A. M. Khorasani, M. Goldberg, E. H. Doeven, and G. Littlefair., Titanium in Biomedical Applications—Properties and Fabrication: A Review, Journal of Biomaterials and Tissue Engineering Vol. 5, 593–619, 2015.
  • [9] D. R. dos Santosa, V. A R. Henriques, C. A. A. Cairo, M. dos Santos Pereira., Production of a Low Young Modulus Titanium Alloy by Powder Metallurgy, Materials Research, Vol. 8, No. 4, 439-442, 2005.
  • [10] M. Lai, Y. Gao, B. Yuan, M. Zhu., Remarkable superelasticity of sintered Ti–Nb alloys by Ms adjustment via oxygen regulation, Materials and Design 87(2015),466–472.
  • [11] B. Sharma, S. K. Vajpai, K. Ameyama., Microstructure and properties of beta Ti-Nb alloy prepared by powder metallurgy route using titanium hydride powder, Journal of Alloys and Compounds 656 (2016) 978e986.
  • [12] D. Zhaoa, K. Changb, T. Ebela, M. Qianc, R. Willumeita, M. Yanc, F. Pyczaka., Microstructure and mechanical behavior of metal injection molded Ti–Nb binary alloys as biomedical material, journal of the mechanical behavior of biomedical materials 28(2013),171–182.
  • [13] J.E. Bidaux, R. Pasquier, M. R. Arbaizar, H. Girard and E. C. Morelli., Low elastic modulus Ti–17Nb processed by powder injection moulding and post-sintering heat treatments, ISSN: 0032-5899 (Print) 1743-2901, 2014.
  • [14] Y. Mantani, M. Tajima., Phase transformation of quenched αıı martensite by aging in Ti–Nb alloys, Materials Science and Engineering A 438–440 (2006) 315–319.
  • [15] Y. Cui, Y. Li, K. Luo, H. Xu., Microstructure and shape memory effect of Ti–20Zr–10Nb alloy, Materials Science and Engineering A 527 (2010) 652–656.
  • [16] E.B. Taddeia, V.A.R. Henriques, C.R.M. Silva, C.A.A. Cairo., Production of new titanium alloy for orthopedic implants, Materials Science and Engineering C 24 (2004) 683–687.
  • [17] C. S. S. Oliveira, S. Griza, M.V. Oliveira, A. A. Ribeiro, M. B. Leite., Study of the porous Ti35Nb alloy processing parameters for implant applications, Powder Technology 281(2015), 91–98.
  • [18] M. Bönisch, M. Calin, T. Waitz, A. Panigrahi, M. Zehetbauer, A. Gebert, W. Skrotzki and J. Eckert., Thermal stability and phase transformations of martensitic Ti–Nb alloys, Sci. Technol. Adv. Mater. 14 (2013) 055004 (9pp).
  • [19] J. Ruan, H. Yang, X. Weng, J. Miao, K. Zhou., Preparation and characterization of biomedical highly porous Ti–Nb alloy, J Mater Sci: Mater Med (2016) 27:76.
  • [20] A. Yolun, Toz metalurjisi ile üretilen TiNb alaşımının biyouyumluluk özelliğinin incelenmesi, Yüksek lisans tezi, Adıyaman Üniversitesi, 2016, 95 sayfa.
  • [21] Ö. Çakmak, TiNbSn alaşımının toz metalurjisi ile üretimi ve biyouyumluluk özelliğinin incelenmesi, Yüksek lisans tezi, Adıyaman Üniversitesi, 2017, 115 sayfa.
  • [22] Y.L. Hao, S.J. Li, S.Y. Sun, R. Yang., Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys, Materials Science and Engineering A 441 (2006) 112–118.
  • [23] L.H. de Almeida, I.N. Bastos, I.D. Santos, A.J.B. Dutra, C.A. Nunes, S.B. Gabriel., Corrosion resistance of aged Ti–Mo–Nb alloys for biomedical applications, Journal of Alloys and Compounds 615 (2014) S666–S669.
  • [24] L.W. Ma, C.Y. Chung, Y.X. Tong, and Y.F. Zheng., Properties of Porous TiNbZr Shape Memory Alloy Fabricated by Mechanical Alloying and Hot Isostatic Pressing, JMEPEG (2011) 20:783–786.
  • [25] H.Y. Kim, H. Satoru, J. Kim, H. Hosoda, and S. Miyazaki., mechanical properties and shape memory behavior of Ti-Nb alloys, materials Transactions, Vol. 45, No,7 (2004) pp. 2443 to 2448.
  • [26] R. Chelariua, G. Bolatb, J. Izquierdoc, D. Marecib, D.M. Gordind,T. Gloriantd, R.M. Soutoc., Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution, Electrochimica Acta 137 (2014) 280–289.
  • [27] J. Fojt, L. Joska, J. Malek, V. Sefl., Corrosion behavior of Ti–39Nb alloy for dentistry, Materials Science and Engineering C 56 (2015) 532–537.
  • [28] A. Cremasco, P.N. Andrade, R.J. Contieri, E.S.N. Lopes, C.R.M. Afonso, R. Caram., Correlations between aging heat treatment, ω phase precipitation and mechanical properties of a cast Ti–Nb alloy, Materials and Design 32 (2011) 2387–2390.
  • [29] Y.J. Bai, Y.B. Wang, Y. Cheng, F. Deng, Y.F. Zheng, S.C. Wei., Comparative study on the corrosion behavior of Ti–Nb and TMA alloys for dental application in various artificial solutions, Materials Science and Engineering C 31 (2011) 702–711.
  • [30] A. Cremasco, W.R. Osorio, C.M.A. Freire, A. Garcia, R. Caram., Electrochemical corrosion behavior of a Ti–35Nb alloy for medical prostheses, Electrochimica Acta 53 (2008) 4867–4874.
  • [31] Y. B. Wang, Y.F. Zheng., Corrosion behaviour and biocompatibility evaluation of low modulus Ti-16Nb shape memory alloy as potential biomaterial, Materials Letters 63 (2009) 1293-1295.
  • [32] K. Zhuravleva, R. Müller, L. Schultz, J. Eckert, A. Gebert, M. Bobeth, G. Cuniberti., Determination of the Young’s modulus of porous ß-type Ti–40Nb by finite element analysis, Materials and Design 64(2014), 1–8.
  • [33] B.L. Wang, Y. B. Wang, Y. F. Zheng., Phase constitution, mechanical property and corrosion resistance of the Ti-Nb alloys, Key Engineering materials Vols. 324-325 (2006) pp. 655-658.
  • [34] W. Xiao-jun., Effects of alkali and heat treatment on strength of porous Ti35Nb, Trans. Nonferrous Met. Soc. China 21(2011) 1335-1339.
  • [35] H. Kanetaka, Y. Shimizu, H. Hosoda, R. Tomizuka, A. Suzuki, S. Urayama, T. Inamura, S. Miyazaki and T. T. Yamamoto., Orthodontic Tooth Movement in Rats Using Ni-Free Ti-Based Shape Memory Alloy Wire, Materials Transactions, Vol. 48, No. 3 (2007) pp. 367 to 372.
  • [36] D. P. de Andrade, L. M. R. de Vasconcellos, I. C. S. Carvalho, L. F. de Brito Penna Forte, E. L. de Souza Santos, R. F. do Prado, D. R. dos Santos, C. A. A. Cairo, Y. R. Carvalho., Titanium–35Niobium alloy as a potential material for biomedical implants: In vitro study, Materials Science and Engineering C 56 (2015) 538–544.
Nevşehir Bilim ve Teknoloji Dergisi-Cover
  • ISSN: 2148-466X
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2012
  • Yayıncı: Nevşehir Hacı Bektaş Veli Üniversitesi