Yüksek İrtifada Yapılan Egzersizin Oksidatif Stres Düzeyine Etkisi

Oksidatif stres 30 yıldan daha fazladır egzersiz temelli çalışmaların odak noktasını oluşturmaktadır. Son yıllarda ise egzersiz, oksidatif stres ve yükseklikte dahil olmak üzere farklı iklim senaryolarında yoğun çalışmalar yapılmaktadır. Yüksekliğe egzersiz adaptasyonları, 1000-1500 m civarında başlamaktadır. Bununla birlikte, literatürde yapılan bir araştırma, 'yüksek rakım' yanıtlarının genellikle 3000 m'nin üzerinde olduğunu ortaya koymaktadır [1,2]. Bireylerin deniz seviyesinde sahip oldukları performanslarını daha iyi düzeye getirmek için yüksekte antrenman yapma düşüncesi yıllardır vardır. Bununla birlikte yaklaşık 30 yıldır yapılan araştırma sonuçlarından elde edilen atletik performans verileri (oksijen doygunluğu, maksimum oksijen tüketimi, kalp atım sayısı, arteriyel kan basıncı gibi) birbirinden oldukça farklıdır. Yüksek irtifa şartları organizma fonksiyonlarında değişimlere neden olmaktadır [3,4]. Dağ ve doğa sporları gibi ağır ve yorucu fiziksel aktivitelerin insan üzerine sistemik ve lokal olarak önemli akut etkileri olduğu bilinmektedir. Vital fonksiyonlar birinci dereceden olmak üzere yüksek irtifanın oksidatif stresi tetiklediği ve farklı doku ve hücrelerin hasarlanmasına neden olduğu ileri sürülmektedir. Hipobarik hipoksik ortamlarda vücut düzenleme mekanizmaları, canlılığın devamı için her yükseklik ortamında farklı davranmaktadır [5]. Vital fonksiyonlar başta olmak üzere canlılığı oluşturan tüm sistemler ve onların işlevlerinin nasıl değiştiği, açıklanması gereken önemli konular olarak belirtilmektedir. Düşük oksijen basıncına maruz kalmanın hem metabolik hem de fizyolojik değişikliklere yol açtığı bilinmektedir [6]. Yüksek irtifada hipoksiden dolayı oksijen talebi sınırlı olacağı için Reaktif oksijen türevlerinin (ROT) üretimininde az olacağı düşünülmesine rağmen, yüksek irtifaya maruz kalmanın da (ROT oluşumu ve antioksidan aktivitesindeki değişikliklerden dolayı) oksidatif hasara yol açabileceği rapor edilmektedir [6,7]. Yüksek irtifada egzersiz ve oksidatif stres hakkında halihazırda bilinenler genellikle sınırlı sayıdaki araştırmalardan elde edilmiştir. Bu araştırma kapsamında Google akademi ve PubMed’ de 1997 ve 2017 tarihleri arasında ilgili yayınlar gözden geçirilerek yüksek irtifada yapılan egzersizlerin oksidatif stres düzeyine etkisini tartışacağız.

The Effect of High Altitude Exercise on Oxidative Stress Level

Oxidative stress is more than 30 years and is the focus of exercise-based studies. In recent years, intensive studies have been carried out in different climate scenarios including exercise, oxidative stress and altitude. The adaptation of exercise to height starts around 1000-1500 m. However, a survey in the literature reveals that 'high altitude' responses are generally greater than 3000 m [1,2]. It has been for decades that people have been training at high altitudes to improve their performance at sea level.However, the athletic performance data (oxygen saturation, maximum oxygen consumption, heart rate, arterial blood pressure, etc.) obtained from the research results of about 30 years are quite different from each other. High altitude conditions cause changes in organism functions [3,4]. It is known that heavy and exhausting physical activities such as mountain and nature sports have systematic and locally significant acute effects on human beings. It has been suggested that the vital functions, first degree, induce oxidative stress and damage different tissues and cells. Body-regulating mechanisms in hypobaric hypoxic environments behave differently in each altitude environment for survival [5]. Vital functions, especially all the systems that make up life and how their functions are changed are mentioned as important issues to be explained. It is known that exposure to low oxygen pressure causes both metabolic and physiological changes [6]. It is reported that exposure to high altitude (due to changes in ROT formation and antioxidant activity) may lead to oxidative damage, although oxygen is not expected to be low in the production of reactive oxygen species (ROT) because oxygen demand will be limited due to hypoxia at high altitudes  [6,7]. Current knowledge about exercise and oxidative stress at high altitudes has been obtained from a limited number of studies. We will discuss the effect of high altitude exercise on oxidative stress level by reviewing relevant publications between 1997 and 2017 at Google academy and PubMed.

___

  • Sanchari Sinha, US Ray, M Saha, SN Singh, and OS Tomar. Antioxidant and redox status after maximal aerobic exercise at high altitude in acclimatized lowlanders and native highlanders. European journal of applied physiology, 106(6):807–814, 2009.
  • Raphael Faiss, Vincent Pialoux, Claudio Sartori, Camille Faes, Olivier Dériaz, and Grégoire P Millet. Ventilation, oxidative stress, and nitric oxide in hypobaric versus normobaric hypoxia. Medicine & Science in Sports & Exercise, 45(2):253–260, 2013.
  • Lindsey E Miller, Graham R McGinnis, Brian Kliszczewicz, Dustin Slivka, Walter Hailes, John Cuddy, Charles Dumke, Brent Ruby, and John C Quindry. Blood oxidative-stress markers during a high-altitude trek. International journal of sport nutrition and exercise metabolism, 23(1):65–72, 2013.
  • Nia Lewis, Damian M Bailey, Gregory R Dumanoir, Laura Messinger, Samuel JE Lucas, James D Cotter, Joseph Donnelly, Jane McEneny, Ian S Young, Mike Stembridge, et al. Conduit artery structure and function in lowlanders and native highlanders: relationships with oxidative stress and role of sympathoexcitation. The Journal of physiology, 592(5):1009–1024, 2014.
  • John Quindry, Charles Dumke, Dustin Slivka, and Brent Ruby. Impact of extreme exercise at high altitude on oxidative stress in humans. The Journal of physiology, 594(18):5093–5104, 2016.
  • Peter Møller, Steffen Loft, Carsten Lundby, and Niels Vidiendal Olsen. Acute hypoxia and hypoxic exercise induce dna strand breaks and oxidative dna damage in humans. The FASEB Journal, 15(7):1181–1186, 2001.
  • J Ashley Jefferson, Jan Simoni, Elizabeth Escudero, Maria-Elena Hurtado, Erik R Swenson, Donald E Wesson, George F Schreiner, Robert B Schoene, Richard J Johnson, and Abdias Hurtado. Increased oxidative stress following acute and chronic high altitude exposure. High altitude medicine & biology, 5(1):61–69, 2004.
  • Alison M Wrynn. ‘a debt was paid off in tears’: Science, ioc politics and the debate about high altitude in the 1968 mexico city olympics. The international journal of the history of sport, 23(7):1152–1172, 2006.
  • Matthew C Schmidt, EW Askew, Donald E Roberts, Ronald L Prior, WY Ensign, and Robert E Hesslink. Oxidative stress in humans training in a cold, moderate altitude environment and their response to a phytochemical antioxidant supplement. Wilderness & environmental medicine, 13(2):94–105, 2002.
  • Michael Grocott, Hugh Montgomery, and Andre Vercueil. High-altitude physiology and pathophysiology: implications and relevance for intensive care medicine. Critical Care, 11(1):203, 2007.
  • Anjana G Vij, Ruma Dutta, and Narinder K Satija. Acclimatization to oxidative stress at high altitude. High altitude medicine & biology, 6(4):301–310, 2005.
  • Carsten Lundby, Jose AL Calbet, Gerrit van Hall, Bengt Saltin, and Mikael Sander. Pulmonary gas exchange at maximal exercise in danish lowlanders during 8 wk of acclimatization to 4,100 m and in high-altitude aymara natives. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287(5):R1202– R1208, 2004.
  • Dante Penaloza and Javier Arias-Stella. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation, 115(9):1132– 1146, 2007.
  • C Lundby, TK Nielsen, F Dela, and R Damsgaard. The influence of intermittent altitude exposure to 4100 m on exercise capacity and blood variables. Scandinavian journal of medicine & science in sports, 15(3):182–187, 2005.
  • Agoston Dosek, Hideko Ohno, Zoltan Acs, Albert W Taylor, and Zsolt Radak. High altitude and oxidative stress. Respiratory physiology & neurobiology, 158(2- 3):128–131, 2007.
  • Zsolt Radák, József Pucsuk, Szilvia Boros, Lorand Josfai, and AW Taylor. Changes in urine 8- hydroxydeoxyguanosine levels of super-marathon runners during a four-day race period. Life sciences, 66(18):1763–1767, 2000.
  • Koji Nakatani, Masaharu Komatsu, Toyohiro Kato, Takao Yamanaka, Hiroaki Takekura, Akira Wagatsuma, Kohji Aoyama, Baohui Xu, Takeshi Hirano, Hiroshi Kasai, et al. Habitual exercise induced resistance to oxidative stress. Free radical research, 39(9):905–911, 2005.
  • Hilmi Orhan, Berry van Holland, Betty Krab, Janine Moeken, Nico PE Vermeulen, Peter Hollander, and John HN Meerman. Evaluation of a multi-parameter biomarker set for oxidative damage in man: increased urinary excretion of lipid, protein and dna oxidation products after one hour of exercise. Free radical research, 38(12):1269–1279, 2004.
  • Richard J Bloomer, Allan H Goldfarb, and Michael J McKenzie. Oxidative stress response to aerobic exercise: comparison of antioxidant supplements. Medicine & science in sports & exercise, 38(6):1098–1105, 2006.
  • Andreas Hartmann, Stefan Pfuhler, Claudia Dennog, Dietmar Germadnik, Alexander Pilger, and Gunter Speit. Exercise-induced dna effects in human leukocytes are not accompanied by increased formation of 8-hydroxy- 2’-deoxyguanosine or induction of micronuclei. Free Radical Biology and Medicine, 24(2):245–251, 1998.
  • Tetsuo Ohkuwa, Hiroshi Itoh, Takako Yamamoto, Chiyoko Minami, Yoshihiko Yamazaki, Shigenobu Kimoto, and Ryoichi Yoshida. Effects of hypoxia and hypoxic training on 8-hydroxydeoxyguanosine and glutathione levels in the liver. Metabolism-Clinical and Experimental, 53(6):716–719, 2004.
  • K Umegaki,MHiguchi, K Inoue, and T Esashi. Influence of one bout of intensive running on lymphocyte micronucleus frequencies in endurance-trained and untrained men. International journal of sports medicine, 19(08):581–585, 1998.
  • Michael Fenech. Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 600(1):58–66, 2006.
  • Z Hamurcu, H Dönmez-Altuntas, M Borlu, H Demirtas, and Ö Asçioslu. Micronucleus frequency in the oral mucosa and lymphocytes of patients with behçet’s disease. Clinical and experimental dermatology, 30(5):565–569, 2005.
  • Maria L Urso and Priscilla M Clarkson. Oxidative stress, exercise, and antioxidant supplementation. Toxicology, 189(1-2):41–54, 2003.
  • Z Radak, K Lee, W Choi, S Sunoo, T Kizaki, S Oh-Ishi, K Suzuki, N Taniguchi, H Ohno, and K Asano. Oxidative stress induced by intermittent exposure at a simulated altitude of 4000 m decreases mitochondrial superoxide dismutase content in soleus muscle of rats. European journal of applied physiology and occupational physiology, 69(5):392–395, 1994.
  • SKS Sarada, P Dipti, B Anju, T Pauline, AK Kain, M Sairam, SK Sharma, G Ilavazhagan, Devendra Kumar, and W Selvamurthy. Antioxidant effect of beta-carotene on hypoxia induced oxidative stress in male albino rats. Journal of ethnopharmacology, 79(2):149–153, 2002.
  • G Ilavazhagan, Anju Bansal, Dipti Prasad, Pauline Thomas, SK Sharma, AK Kain, Devendra Kumar, and W Selvamurthy. Effect of vitamin e supplementation on hypoxia-induced oxidative damage in male albino rats. Aviation, space, and environmental medicine, 72(10):899– 903, 2001.
  • J-P Richalet, A Hornych, C Rathat, J Aumont, P Larmignat, and P Remy. Plasma prostaglandins, leukotrienes and thromboxane in acute high altitude hypoxia. Respiration physiology, 85(2):205–215, 1991.
  • P Joanny, J Steinberg, P Robach, JP Richalet, C Gortan, B Gardette, and Y Jammes. Operation everest iii (comex’97): the effect of simulated severe hypobaric hypoxia on lipid peroxidation and antioxidant defence systems in human blood at rest and after maximal exercise. Resuscitation, 49(3):307–314, 2001.
  • Stacie L Wing, E Wayne Askew, Maurie J Luetkemeier, Darin T Ryujin, Gary H Kamimori, and Colin K Grissom. Lack of effect of rhodiola or oxygenated water supplementation on hypoxemia and oxidative stress. Wilderness & environmental medicine, 14(1):9–16, 2003.
  • Nevin Atalay Güzel, Hale Sayan, and Deniz Erabas. Effects of moderate altitude on exhaled nitric oxide, erythrocytes lipid peroxidation and superoxide dismutase levels. The Japanese journal of physiology, 50(2):187–190, 2000.
  • Alina Wozniak, Gerard Drewa, Gabriel Chesy, Andrzej Rakowski, Malgorzata Rozwodowska, and Dorota Olszewska. Effect of altitude training on the peroxidation and antioxidant enzymes in sportsmen. Medicine & Science in Sports & Exercise, 33(7):1109–1113, 2001.
  • Carsten Lundby, Henriette Pilegaard, Gerrit van Hall, Mikael Sander, Jose Calbet, Steffen Loft, and Peter Møller. Oxidative dna damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia. Toxicology, 192(2-3):229–236, 2003.
  • Gustavo González, Gloria Celedón, Marcela Escobar, Carlos Sotomayor, Verónica Ferrer, Dixan Benítez, and Claus Behn. Red cell membrane lipid changes at 3500 m and on return to sea level. High altitude medicine & biology, 6(4):320–326, 2005.
  • José Magalhaes, Antonio Ascensao, Ginés Viscor, José Soares, José Oliveira, Franklin Marques, and José Duarte. Oxidative stress in humans during and after 4 hours of hypoxia at a simulated altitude of 5500 m. Aviation, space, and environmental medicine, 75(1):16–22, 2004.
  • Ronald D Snyder and Marilyn S Diehl. Hypoxia-induced micronucleus formation in mice. Drug and chemical toxicology, 28(4):373–378, 2005.
  • Xavier Woorons, Pascal Mollard, Christine Lamberto, Muriel Letournel, and Jean-paul Richalet. Effect of acute hypoxia on maximal exercise in trained and sedentary women. Medicine & Science in Sports & Exercise, 37(1):147–154, 2005.
  • Fumio Nishihara, Hitoshi Shimada, and Shigeru Saito. Rate pressure product and oxygen saturation in tourists at approximately 3000 m above sea level. International archives of occupational and environmental health, 71(8):520–524, 1998