Elektroeğirme Yöntemi ile Fibröz Doku İskelelerinin Üretimi

Polimer çözeltilerinden veya eriyiklerinden nano/mikro ölçekteki fiberlerin (lif) üretilmesine olanak sağlayan bir teknik olan elektroeğirme tekniği Tıp’tan mühendisliğe kadar çok sayıda uygulamaya sahip birbiriyle iç içe geçmiş nanofiber örgülerin elde edilmesinde sıklıkla kullanılmaktadır.  Nanofiber üretiminde kullanılan çekme, kalıp (template) sentezi, faz ayrımı ve kendi kendine düzenlenme gibi yöntemlere nazaran, sürekli fiber üretimine uygun, kullanımı kolay, çok yönlü ve düşük maliyetli bir yöntemdir. Elektroeğirme tekniği ile üretilen nanofiberlerin olağanüstü yüzey alanı/hacim oranına, kontrol edilebilir gözenek yapısına, yüksek gözenekliliğe, esnek yüzey özelliklerine, yüksek işlevselliklere ve üstün mekanik özelliklere sahip olması gibi birçok avantajı vardır. Bu teknik ile çeşitli formlarda (gelişigüzel ya da doğrusal düzende) örülmemiş fiberlerin elde edilebilmesi mümkündür. Elektroeğirme yöntemi ile fibröz formda iki ve üç boyutlu doku iskelelerinin üretilmesi sağladığı avantajlar nedeni ile son dönemlerde oldukça ilgi çekici hale gelmiştir.

Fabrication of Two- and Three- Dimensional Fibrous Mats by Electrospinning Method

Electrospinning technique, which is a technique that allows the production of nano/micro nanofibers (fibers) from polymer solutions or melts, is often used to obtain interconnected nanofiber mats with many applications ranging from medicine to engineering. It is an easy to use, versatile and cost-effective method suitable for continuous fiber production compared to methods such as drawing, template synthesis, phase separation and self-assembly. Nanofibers produced by electrospinning have many advantages such as exceptional surface area / volume ratio, controllable pore structure, high porosity, flexible surface properties, high functionality and superior mechanical properties. With this technique it is possible to obtain nonwoven fibers in various forms (random or aligned). Recently, it has become very attractive due to the advantages of producing two- and three-dimensional tissue scaffolds in fibrous form by electrospinning method.

___

  • D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?” Advanced materials, vol. 16, no. 14, pp. 1151–1170, 2004.
  • Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites science and technology, vol. 63, no. 15, pp. 2223–2253, 2003.
  • L. S. Nair, S. Bhattacharyya, and C. T. Laurencin, “Development of novel tissue engineering scaffolds via electrospinning,” Expert opinion on biological therapy, vol. 4, no. 5, pp. 659–668, 2004.
  • S.Chew,Y.Wen,Y.Dzenis,andK.W.Leong,“Theroleofelectrospinningintheemergingfieldofnanomedicine,”Current pharmaceutical design, vol. 12, no. 36, pp. 4751–4770, 2006.
  • S. Kumbar, R. James, S. Nukavarapu, and C. Laurencin, “Electrospun nanofiber scaffolds: engineering soft tissues,” Biomedical materials, vol. 3, no. 3, p. 034002, 2008.
  • T. J. Sill and H. A. von Recum, “Electrospinning: applications in drug delivery and tissue engineering,” Biomaterials, vol. 29, no. 13, pp. 1989–2006, 2008.
  • B. Mavis, T. T. Demirtas¸, M. Gümüş derelioğlu, G. Gündüz, and Ü. Çolak, “Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate,” Acta biomaterialia, vol. 5, no. 8, pp. 3098–3111, 2009.
  • M. Şimşek, M. Capkın, A. Karakeçili, and M. Gümüs¸derelio˘glu, “Chitosan and polycaprolactone membranes patterned via electrospinning: effect of underlying chemistry and pattern characteristics on epithelial/fibroblastic cell behavior.” Journal of biomedical materials research. Part A, vol. 100, no. 12, pp. 3332–3343, 2012.
  • S. H. Lim and H.-Q. Mao, “Electrospun scaffolds for stem cell engineering,” Advanced drug delivery reviews, vol. 61, no. 12, pp. 1084–1096, 2009.
  • M. Şimşek, “Nanofiber-desenli polimerik membranlar: Yüzey kimyası, topografisi ve hücresel etkiles¸imler,” 2014.
  • A. Vaseashta, “Controlled formation of multiple taylor cones in electrospinning process,” Applied Physics Letters, vol. 90, no. 9, p. 093115, 2007.
  • S. Paruchuri and M. P. Brenner, “Splitting of a liquid jet,” Physical review letters, vol. 98, no. 13, p. 134502, 2007.
  • W. Tomaszewski and M. Szadkowski, “Investigation of electrospinning with the use of a multi-jet electrospinning head,” Fibres and Textiles in Eastern Europe, vol. 13, no. 4, p. 22, 2005.
  • R. Bocanegra, D. Galán, M. Márquez, I. Loscertales, and A. Barrero, “Multiple electrosprays emitted from an array of holes,” Journal of Aerosol Science, vol. 36, no. 12, pp. 1387–1399, 2005.
  • R. Nayak, R. Padhye, I. L. Kyratzis, Y. B. Truong, and L. Arnold, “Recent advances in nanofibre fabrication techniques,” Textile Research Journal, vol. 82, no. 2, pp. 129–147, 2012.
  • Y. YAMASHITA, F. Ko, A. TANAKA, and H. MIYAKE, “Characteristics of elastomeric nanofiber membranes produced by electrospinning,” Journal of Textile Engineering, vol. 53, no. 4, pp. 137–142, 2007.
  • F. Li, Y. Zhao, and Y. Song, “Core-shell nanofibers: nano channel and capsule by coaxial electrospinning,” in Nanofibers. InTech, 2010.