ENHANCEMENT OF IMMUNE SYSTEM IN ADDITION TO MEDICAL THERAPY FOR COUNTERACTING COVID-19: THE IMPORTANCE OF MICRONUTRIENTS

Immune responses in patients with Coronavirus Disease 2019 infection have been dysregulated. Decreased T cells, natural killer cells, monocytes/macrophages and increased proinflammatory cytokines are observed. Immunological status of the body is greatly affected by the nutrition. Micronutrients are required for the optimum performance of macronutrients. Vitamin and trace element deficiencies are generally associated with altered immune responses, which lead to increased susceptibility to infections. Supplementation with micronutrients generally reverses many impaired immune responses. In this study, close associations between the regulation of immune processes and some vitamins, trace elements as well as phytochemicals have been pointed out. In addition to a proper diet as well as a medical therapy, supplementation of vitamins A, B6, B9, B12, C, D, E and zinc, copper, selenium may be beneficial for both prevention and treatment of viral infections including this new extraordinary coronavirus disease. The investigations on phytochemicals are also underway. In individuals with a powerful immune system, the recovery from this disease is either without symptoms or with a mild clinical picture. Therefore, it is plausible to apply natural integrative approaches comprising some vitamins, minerals and phytochemicals as preventive measures or as supplements in addition to the present medical treatment. This approach will favor the enhancement of the immune system. Such an integrative treatment reduces morbidity and mortality rates in patients, who have been contaminated with this virus. Micronutrients, within the scope of immune system, may be conceivable as the expedient to find some solutions for the prevention and/or treatment of this disease.

COVID-19 ile Mücadelede Tıbbi Tedaviye ek olarak İmmün Sistemin Güçlendirilmesi: Mikrobesinlerin Önemi

Koronavirüs 2019’lu hastalarda immün cevapların düzenlenmesi bozulmaktadır. Azalmış T hücreleri, doğal öldürücü hücreler, monositler/makrofajlar ve artmış proinflamatuvar sitokinler gözlenmektedir. Vücudun bağışıklık durumu beslenmeden büyük ölçüde etkilenir. Mikrobesinler, makrobesinlerin optimum performansı için gereklidir. Vitamin ve eser element eksiklikleri sırasında genel olarak immün cevaplar değişir. Bu da enfeksiyonlara eğilimin artmasına yol açar. Mikrobesin desteği genellikle birçok bozulmuş immün cevabın geriye çevrilmesini sağlar. Bu çalışmada, immün işleyişin düzenlenmesi ile bazı vitamin, eser element ve fitokimyasallar arasındaki yakın beraberliklere dikkat çekilmiştir. Uygun bir diyetin yanısıra tıbbı tedaviye ek olarak A, B6, B9, B12, C, D, E vitaminleri ile çinko, bakır, selenyum destekleri bu yeni sıradışı koronavirüs hastalığını da içine alan viral enfeksiyonların önlenmesi ve tedavisi için yararlı olabilir. Fitokimyasallar ile ilgili çalışmalar da sürdürülmektedir. Güçlü bir immün sistemi olan hastalarda iyileşme ya semptomsuz ya da hafif bir klinik tablo beraberliğinde gerçekleşmektedir. Bu nedenle, uygulanmakta olan tıbbi tedaviye ek olarak ya da koruyucu önlem olarak, vitaminleri, mineralleri ve fitokimyasalları da içine alan doğal bütünleyici yaklaşımların uygulanması kabul edilebilir. Bu yaklaşım immün sistemin iyileştirilmesine yardımcı olacaktır. Bu tip bir bütünleyici tedavi, bu virüs ile kontamine olmuş hastalarda morbidite ve mortalite oranlarını önemli ölçüde azaltır. Mikrobesinler, immün sistem kapsamında, bu hastalığın önlenmesi ve/veya tedavisi için bazı çözümler bulunması konusunda önlem olarak düşünülebilir.

___

1. Donma MM, Donma O, Michalke B, Halbach S, Nischwitz V: Vitamins, Minerals, and Metabolic Pathways in Health and Diseases with a Special Chapter on Speciation (1st ed). Istanbul: Istanbul University Publishing House, 2012; 7-12.

2. Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune system- Working in harmony to reduce the risk of infection. Nutrients. 2020;12(1), pii: E236.

3. Maggini S, Pierre A, Calder PC. Immune function and micronutrient requirements change over the life course. Nutrients. 2018;10(10), pii: E1531.

4. Castellani ML, Shaik-Dasthagirisaheb YB, Tripodi D, Anogeianaki A, Felaco P, Toniato E, et al. Interrelationship between vitamins and cytokines in immunity. J Biol Regul Homeost Agents. 2010;24(4):385-90.

5. Chandra RK. Nutrition and immune system: an introduction. Am J Clin Nutr. 1997;66(2):460S-3S.

6. Santos-Rosa M, Bienvenu J, Whicher J: Cytokines. In: Burtis CA, Ashwood ER (eds), TIETZ Textbook of Clinical Chemistry. USA: W B Saunders, 1999; 541-616.

7. Berger A. Science commentary: Th1 and Th2 responses: what are they? BMJ.2000;321(7258):424.

8. Chandra RK. Effect of vitamin and trace-element supplementation on immune responses and infection in elderly subjects. Lancet. 1992;340(8828):1124–7.

9. Muscogiuri G, Barrea L, Savastano S, Colao A, et al. Nutritional recommendations for CoVID-19 quarantine. Eur J Clin Nutr. 2020;74(6):850-1.

10. Maret W. Cellular zinc and redox states converge in the metallothionein/thionein pair. J Nutr.2003;133(5 Suppl1):1460S–2S.

11. Mocchegiani E, Malavolta M. Role of zinc and selenium in oxidative stress and immunosenescence: Implications for healthy aging and longevity. Handbook of immunosenescence: Basic understanding and clinical implications. 2019; 2539–73.

12. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-8.

13. Wang F, Nie J, Wang H, Zhao Q, Xiong Y, Deng L, et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis. 2020; 221(11):1762-9.

14. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunologic features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-9.

15. Zhou X, Kong N, Wang J, Fan H, Zou H, Horwitz D, et al. Cutting edge: All-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. J Immunol. 2010; 185(5): 2675-9.

16. Russell RM. Vitamin A spectrum: from deficiency to toxicity. Am J Clin Nutr. 2000; 71(4): 878-84.

17. Iwata M. The roles of retinoic acid in lymphocyte differentiation. Sem Immunol. 2009; 21(1):1.

18. Hoag KA, Nashold FE, Goverman J,Hayes CE. Retinoic acid enhances the T helper 2 cell development that is essential for robust antibody responses through its action on antigen-presenting cells. J Nutr. 2002; 132(12): 3736-9.

19. Duriancik DM, Lackey DE, Hoag KA. Vitamin A as a regulator of antigen presenting cells. J Nutr. 2010; 140(8): 1395-9.

20. Dawson HD, Collins G, Pyle R, Key M, Taub DD. The retinoic acid receptor-alpha mediates human T-cell activation and Th2 cytokine and chemokine production. BMC Immunol. 2008; 9:16.

21. Cantorna MT, Nashold FE, Chun TY, Hayes CE. Vitamin A down-regulation of IFN-gamma synthesis in cloned mouse Th1 lymphocytes depends on the CD28 costimulatory pathway. J Immunol. 1996; 156(8):2674-9.

22. Gasmi A, Noor S, Tippairote T, Dadar M, Menzel A, Bjørklund G. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin Immunol. 2020;215:108409.

23. Jee J, Hoet AE, Azevedo MP, Vlasova AN, Loerch SC, Pickworth CL, et al. Effects of dietary vitamin A content on antibody responses of feedlot calves inoculated intramuscularly with an inactivated bovine coronavirus vaccine, Am J Vet Res. 2013; 74(10):1353-62.

24. Kańtoch M, Litwińska B, Szkoda M, Siennicka J. Importance of vitamin A deficiency in pathology and immunology of viral infections. Rocz Panst Zakl Hig. 2002;53(4):385-92.

25. Calder PC. Feeding the immune system. Proc Nutr Soc. 2013; 72(3): 299–309.

26. Villamor E, Fawzi WW. Effects of vitamin a supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev. 2005; 18(3): 446–64.

27. Micronutrient Information Center. Immunity in Depth. Linus Pauling Institute. 2016. Available online: http://lpi.oregonstate.edu/mic/health-disease/immunity (accessed on 10 May 2019).

28. Maggini S, Beveridge S, Sorbara JP, Senatore G. Feeding the immune system: The role of micronutrients in restoring resistance to infections. CAB Rev. 2008; 3(098):1–21.

29. Wishart K. Increased micronutrient requirements during physiologically demanding situations: Review of the current evidence. Vitam Miner. 2017; 6(2): 1–16.

30. Trottier C, Colombo M, Mann KK, Miller WH Jr, Ward BJ. Retinoids inhibit measles virus through a type I IFNγ dependent bystander effect. FASEB J. 2009; 23(9):3203-12.

31. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020;92(5):479–90.

32. Wu D, Lewis ED, Pae M, Meydani SN. Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Front Immunol. 2019; 9: 3160.

33. Saeed F, Nadeem M, Ahmed RS, Nadeem MT, Arshad S,Ullah A. Studying the impact of nutritional immunology underlying the modulation of immune responses by nutritional compounds—A review. Food Agric Immunol. 2016; 27(2): 205–29.

34. Sakakeeny L, Roubenoff R, Obin M, Fontes JD, Benjamin EJ, Bujanover Y, et al. Plasma pyridoxal-5-phosphate is inversely associated with systemic markers of inflammation in a population of U.S. adults. J Nutr. 2012;142(7): 1280–5.

35. Ueland PM, McCann A, Midttun O, Ulvik A. Inflammation, vitamin B6 and related pathways.Mol Asp Med. 2017; 53:10–27.

36. Haryanto B, Suksmasari T, Wintergerst E, Maggini S. Multivitamin supplementation supports immune function and ameliorates conditions triggered by reduced air quality. Vitam Miner. 2015;4(2):1-15.

37. Calder P, Prescott S, Caplan M: Scientific Review: The Role of Nutrients in Immune Function of Infants and Young Children Emerging Evidence for Long-Chain Polyunsaturated Fatty Acids. Illinois: Mead Johnson & Company: Glenview, 2007.

38. Troen AM, Mitchell B, Sorensen B, Wener MH, Johnston A, Wood B, et al. Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women. J Nutr. 2006; 136(1): 189–94.

39. Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front Nutr. 2019; 6: 48.

40. Selhub J. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J Nutr Health Aging. 2002; 6(1): 39–42.

41. Tamura J, Kubota K, Murakami H, Sawamura M, Matsushima T, Tamura T, et al. Immunomodulation by vitamin B12: Augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin Exp Immunol. 1999; 116(1): 28–32.

42. Maggini S, Wintergerst E, Beveridge S, Hornig DH. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr. 2007; 98(Suppl 1): S29–S35.

43. Wintergerst ES, Maggini S Hornig DH. Immuneenhancing role of vitamin C and zinc and effect on clinical conditions. Ann Nutr Metab. 2006;50(2): 85-94.

44. Zhang J, Xie B, Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav Immun. 2020;87:59-73.

45. Hemila H. Vitamin C intake and susceptibility to pneumonia. Pediatr Infect Dis J.1997;16(9):836-7.

46. Bikle DD. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009;94(1): 26-34.

47. Bruce D, Yu S, Ooi JH, Cantorna MT. Converging pathways lead to overproduction of IL-17 in the absence of vitamin D signaling. Int Immunol. 2011; 23(8): 519-28.

48. Guillot X, Semerano L, Saidenberg-Kermanac’h N, Falgarone G, Boissier MC. Vitamin D and inflammation. Joint Bone Spine. 2010; 77(6): 552-7.

49. Hewison M. Vitamin D and the immune system. New perspectives on an old theme. Endocrinol Metab Clin North Am. 2010; 39(2): 365-79.

50. Smolders J, Thewissen M, Peelen E, Menheere P, Tervaert JW, Damoiseaux J, et al.Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One. 2009; 4(8):e6635.

51. Thurnham DI. Plasma 25-hydroxy-cholecalciferol (vitamin D) is depressed by inflammation: Implications and parallels with other micronutrients. Sight & Life. 2011; 25:38-47.

52. Vanoirbeek E, Krishnan A, Eelen G, Verlinden L, Bouillon R, Feldman D, et al. The anti- cancer and antiinflammatory actions of 1,25(OH)2 D3. Best Pract Res Clin Endocrinol Metab. 2011; 25(4):593-604.

53. Duchateau J, Servais G, Vreyens R, Delespesse G, Bolla K. Modulation of immune response in aged humans through different administration modes of thymopentin. Surv Immunol Res. 1985;4(suppl 1):94-101.

54. Gupta S, Read SA, Shackel NA, Hebbard L, George J, Ahlenstiel G. The role of micronutrients in the infection and subsequent response to Hepatitis C virus.Cells. 2019;8(6):603.

55. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020;12(4):988.

56. Meghil MM, Hutchens L, Raed A, Multani NA, Rajendran M, Zhu H, et al. The influence of vitamin D supplementation on local and systemic inflammatory markers in periodontitis patients: A pilot study. Oral Dis. 2019; 25(5): 1403–13.

57. Cannell JJ, Vieth R, Umhau JC, Holick MF, Grant WB, Madronich S, et al. Epidemic influenza and vitamin D. Epidemiol Infect. 2006; 134(6):1129–40.

58. Wu D, Lewis ED, Pae M, Meydani SN. Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Front Immunol. 2019; 9:3160.

59. Meydani SN, Han SN, Wu D. Vitamin E and immune response in the aged: Molecular mechanisms and clinical implications. Immunol Rev. 2005; 205(1): 269-84.

60. Wu D, Meydani SN. Age-associated changes in immune and inflammatory responses: impact of vitamin E intervention. J Leukoc Biol. 2008; 84(4):900–14.

61. Adolfsson O, Huber BT, Meydani SN. Vitamin Eenhanced IL-2 production in old mice: naive but not memory T cells show increased cell division cycling and IL-2-producing capacity. J Immunol. 2001;167(7):3809–17.

62. Skrajnowska D, Bobrowska-Korczak B. Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients. 2019; 11(10): 2273.

63. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998; 68 (2 suppl.): 447S-63S.

64. Fraker PJ, King LE, Laakko T, Vollmer TL. The dynamic link between the integrity of the immune system and zinc status. J Nutr. 2000; 130(5S Suppl): 1399S–406S.

65. Sangthawan D, Phungrassami T, Sinkitjarurnchai W. Effects of zinc sulfate supplementation on cell-mediated immune response in head and neck cancer patients treated with radiation therapy. Nutr Cancer. 2015; 67(3): 449–56.

66. Tergaonkar V. NF-κB pathway: A good signaling paradigm and therapeutic target. Int J Biochem Cell Biol. 2006; 38(10): 1647–53.

67. Rosenkranz E, Maywald M, Hilgers RD, Brieger A, Clarner T, Kipp M, et al. Induction of regulatory T cells in Th1-/Th17-driven experimental autoimmune encephalomyelitis by zinc administration. J Nutr Biochem. 2016; 29:116–23.

68. Rosenkranz E, Metz CH, Maywald M, Hilgers RD, Weßels I, Senff T, et al. Zinc supplementation induces regulatory T cells by inhibition of Sirt-1 deacetylase in mixed lymphocyte cultures. Mol Nutr Food Res. 2016; 60(3):661–71.

69. Kitabayashi C, Fukada T, Kanamoto M, Ohashi W, Hojyo S, Atsumi T, et al. Zinc suppresses Th17 development via inhibition of STAT3 activation. Int Immunol. 2010; 22(5):375–86.

70. Maywald M, Wang F, Rink L. Zinc supplementation plays a crucial role in T helper 9 differentiation in allogeneic immune reactions and non-activated T cells. J Trace Elem Med Biol. 2018; 50:482–8.

71. Wessels I, Maywald M, Rink L. Zinc as a gatekeeper of immune function. Nutrients. 2017; 9(12): 1286.

72. te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLOS Pathog. 2010;6(11):e1001176.

73. Baltaci AK, Mogulkoc R. Leptin and zinc relation: In regulation of food intake and immunity. Indian J Endocrinol Metab. 2012;16(Suppl 3):S611‐S6.

74. Keyhan SO, Fallahi HR, Cheshmi B. Dysosmia and dysgeusia due to the 2019 novel coronavirus; a hypothesis that needs further investigation. Maxillofac Plast Reconstr Surg. 2020;42(1): 9.

75. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al.Olfactory and gustatory dysfunctions as a clinical presentation of mild-tomoderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020; 277(8):2251-61.

76. Yagi T, Asakawa A, Ueda H, Ikeda S, Miyawaki S, Inui A. The role of zinc in the treatment of taste disorders. Recent Pat Food Nutr Agric. 2013; 5(1): 44–51.

77. Moore JB, Blanchard RK, McCormack WT, Cousins RJ. cDNA array analysis identifies thymic LCK as upregulated in moderate murine zinc deficiency before T-lymphocyte population changes. J Nutr. 2001; 131(12): 3189–96.

78. Maywald M, Wessels I, Rink L. Zinc signals and immunity. Int J Mol Sci. 2017; 18(10): 2222.

79. Sandström B, Cederblad A, Lindblad BS, Lönnerdal B. Acrodermatitis enteropathica, zinc metabolism, copper status, and immune function. Arch Pediatr Adolesc Med. 1994; 148(9): 980–5.

80. Bonaventura P, Benedetti G, Albarede F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015; 14(4): 277–85.

81. Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C, Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr. 2020; 14(4): 367-82.

82. Li C, Li Y, Ding C. The role of copper homeostasis at the host-pathogen axis: From bacteria to fungi. Int J Mol Sci. 2019; 20(1): 175.

83. Miyamoto, D., Kusagaya Y, Endo N, Sometani A, Takeo S, Suzuki T, et al. Thujaplicin- copper chelates inhibit replication of human influenza viruses. Antiviral Res. 1998;39(2):89-100.

84. Sagripanti JL, Routson LB, Lytle CD. Virus inactivation by copper or iron ions alone and in the presence of peroxide. Appl Environ Microbiol. 1993; 59(12): 4374-6.

85. Raha S, Mallick R, Basak S, Duttaroy AK. Is copper beneficial for COVID-19 patients? Med Hypotheses. 2020; 142: 109814.

86. Percival SS. Copper and immunity. Am J Clin Nutr. 1998; 67(5 Suppl): 1064s–8s.

87. Guillin OM, Vindry C, Ohlmann T, Chavatte L. Selenium, selenoproteins and viral infection.Nutrients. 2019;11(9):2101.

88. Xue H, Wang W, Li Y, Shan Z, Li Y, Teng X, et al. Selenium upregulates CD4(+)CD25(+) regulatory T cells in iodine-induced autoimmune thyroiditis model of NOD.H-2(h4) mice. Endocr J. 2010; 57(7):595–601.

89. Prentice S. They are what you eat: Can nutritional factors during gestation and early infancy modulate the neonatal immune response? Front Immunol. 2017; 8: 1641.

90. Harthill M. Review: micronutrient selenium deficiency influences evolution of some viral infectious diseases. Biol Trace Elem Res. 2011; 143(3):1325-36.

91. Coppola M, Mondola R. Phytotherapeutics and SARSCoV-2 infection: Potential role of bioflavonoids. Med Hypotheses. 2020; 140:109766.

92. Pae M, Wu D. Immunomodulating effects of epigallocatechin-3-gallate from green tea: mechanisms and applications. Food Funct. 2013; 4(9):1287–303.

93. Arreola R, Quintero-Fabián S, López-Roa RI, Flores-Gutiérrez EO, Reyes-Grajeda JP, Carrera-Quintanar L, et al. Immunomodulation and anti-inflammatory effects of garlic compounds. J Immunol Res. 2015; 2015: 401630.

94. Beni MA, Omidi M. Effect of short-term garlic supplementation on CD4 and CD8 factors in young karate athletes after intense exercise session. CMJA 2018; 7: 2041-51.

95. Sánchez-Sánchez MA, Zepeda-Morales ASM, Carrera-Quintanar L, Viveros-Paredes JM, Franco-Arroyo NN, Godínez-Rubí M, et al. Alliin, an Allium sativum nutraceutical, reduces metaflammation markers in DIO mice. Nutrients. 2020; 12(3): E624.

96. Amor S, González-Hedström D, Martín-Carro B, Almodóvar P, Prodanov M, García-Villalón AL, et al. Beneficial effects of an aged black garlic extract in the metabolic and vascular alterations induced by a high fat/sucrose diet in male rats. Nutrients. 2019; 11(1): 153.

97. Ogra Y, Ogihara Y, Anan Y. Comparison of the metabolism of inorganic and organic selenium species between two selenium accumulator plants, garlic and Indian mustard. Metallomics. 2017;9(1):61-8.

98. Donma M, Karasu E, Ozdilek B, Turgut B, Topcu B, Nalbantoglu B, et al. CD4(+), CD25(+), FOXP3 (+) T regulatory cell levels in obese, asthmatic, asthmatic obese and healthy children. Inflammation. 2015; 38(4):1473-8.

99. Donma MM, Donma O. Trace elements and physical activity in children and adolescents with depression. Turkish J Med Sci. 2010; 40(3): 323-33.
Namık Kemal Tıp Dergisi-Cover
  • ISSN: 2587-0262
  • Başlangıç: 2013
  • Yayıncı: Erkan Mor
Sayıdaki Diğer Makaleler

ANXIETY SYMPTOMS IN HEALTHCARE WORKERS AND THEIR CHILDREN DURING THE COVID-19 PANDEMIC IN TURKEY

Berkan ŞAHİN, Esra HOŞOĞLU, Bedia Sultan ÖNAL

COVID-19 PANDEMİSİNDE NEFROLOJİ KLİNİKLERİNİN YÖNETİMİ

Nergiz BAYRAKCI, Gülsüm ÖZKAN

PRİMER ENUREZİS NOCTURNA TANILI HASTALARDA EN ZOR SORULAR: DOĞRU TEDAVİ? DOĞRU SÜRE?

Mehtap ÇELAKIL

THE EVALUATION OF NEW GENERATION INFLAMMATORY MARKERS IN CHILDREN WITH MORBID OBESITY AND METABOLIC SYNDROME

Mustafa Metin DONMA, Sevgi Dilan ERSELCAN, Ahsen YILMAZ, Savaş GUZEL, Orkide DONMA

PRAMIPEKSOL İLIŞKILI UYGUNSUZ ANTIDIÜRETIK HORMON SALINIMI SENDROMU

Fettah EREN, Ayşegül DOĞAN DEMİR, Güllü EREN

MORPHOLOGICAL AND CLINICAL ASPECTS OF ABERRANT SUBCLAVIAN ARTERY: SINGLE CENTER MULTIDEDECTOR COMPUTED TOMOGRAPHY BASED STUDY

Tuğba İlkem KURTOĞLU ÖZÇAĞALAYAN, Ömer ÖZÇAĞALAYAN, GÜlcan GÜCER ŞAHİN, Gülşah BERBEROĞLU, Hilal KURTOĞLU GÜMÜŞEL

ATYPICAL CT FINDINGS AND CLINICAL CORRELATION OF COVID-19 PNEUMONIA

GÜlcan GÜCER ŞAHİN, Tuğba İlkem KURTOĞLU ÖZÇAĞALAYAN, Ömer ÖZÇAĞALAYAN, Hadi SASANI, Ayhan ŞAHİN

OPERE ERKEN EVRE AKCİĞER KANSERİ HASTALARINDA PROGNOSTİK FAKTÖRLER RETROSPEKTİF TEK MERKEZ SONUÇLARI

Özkan ALAN, Özlem ERCELEP, Tuğba AKİN TELLİ, Eda ŞİMŞEK TANRIKULU, Rahib HASANOV, Tuğba BASOGLU, Mehmet Akif ÖZTÜRK, Serap ŞENGÖREN KAYA, Nalan BABACAN AKGUL, Tunç LAÇİN, Emine BAŞ BOZKURTLAR, Faysal DANE, Perran Fulden YUMUK

AIFM3 ARACILI APOPTOZ SİNYALİNİN KANSER HÜCRELERİNDE MİR-96-5P İLE BASKILANMASI

Esra BOZGEYIK

Toraks Bilgisayarlı Tomografi ve Koroner Bilgisayarlı Tomografi Anjiografide Atriyum ve Ventrikül Ölçümlerin Uyumluluğunun Değerlendirilmesi

Nermin TUNÇBİLEK, Fethi Emre USTABAŞIOĞLU, Derya KARABULUT, Cihan ÖZGÜR, Cesur SAMANCI