Kanatlı kümes hayvanları rasyonlarında makroalg çeşitlerinin kullanılması

Makroalgler yaklaşık 12.000 tür ihtiva eder ve dünyada yıllık bazda yaklaşık 30.13 milyon ton miktarında hasat edilirler. Makroalgal biyoteknolojinin gelişmesi ile gıda, gübre, farmasötik, kozmetik ve sağlık alanında kullanımları hızla artmıştır. Tarım ve hayvan gıdası uygulamaları olarak 2017 yılında makroalglerin kullanımlarında oldukça yüksek pazar payına ulaşılmıştır ve ileriki yıllarda bu alanda daha da fazla ilerlemenin olacağı tahmin edilmektedir. Genel olarak deniz yosunları (makroalgler) hayvan yemlerinde karbonhidrat, protein, mineral, vitamin ve fonksiyonel madde kaynağı olarak kullanılırlar. Kaliteli aminoasit miktarlarının yanı sıra rasyonlar açısından benzersiz biyoaktif bileşen kaynaklarıdır. Kanatlı ürünlerine olan talep dünya çapında giderek artmaktadır ve hayvansal ürün tüketiminin %47’ sini kanatlı kümes hayvanları oluşturmaktadır. Bu derleme makalesinde kanatlı kümes hayvanlarının rasyonlarında kullanılabilen bazı spesifik makroalgler incelenerek bunların büyüme performansına, bağırsak mikroflorasına ve kanatlı sistemlerine etkileri araştırılmıştır.

The use of macroalgae varieties in poultry rations

Macroalgae contain approximately 12,000 species and are harvested annually in the world in an amount of approximately 30.13 million tons. With the development of macroalgal biotechnology, their use in food, fertilizer, soap and health has increased rapidly. High market share in the use of macroalgae as agricultural and animal food applications was reached in 2017, and further progress is anticipated on the way forward. Generally, seaweeds (macroalgae) are used as a source of carbohydrates, proteins, minerals, vitamins and substances in my animal feeds. The rankings of quality amino acids are unique sources of bioactive ingredients. Demand for poultry products is increasing in the world and poultry can be investigated for 47% of the consumption of animal products. In this review article, the effects on some specific macroalgae growth performance, intestinal microflora and poultry systems that cannot be used in poultry diets were investigated.

___

  • Abudabos, A. M., Okab, A. B., Aljumaah, R. S., Samara, E. M., Abdoun, K. A., & Al-Haidary,A. A.,(2013). Nutritional value of green seaweed (Ulva lactuca) for broiler chickens.Italian Journal of Animal Science, 12(2), e28.
  • Al-Harthi, M. A., & El-Deek, A. A. (2012). Effect of different dietary concentrations of brown marine algae (Sargassum dentifebium) prepared by different methods on plasma and yolk lipid profiles, yolk total carotene and lutein plus zeaxanthin of laying hens. Italian Journal of Animal Science, 11(4), e64.
  • Atay, D. (1984). Bitkisel akuakültür ve üretim tekniği. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ankara, 203 s
  • Ben‐Amotz, A., Edelstein, S., & Avron, M. (1986). Use of the β‐carotene rich alga Dunaliella bardawil as a source of retinol. British poultry science, 27(4), 613-619.
  • Bradbury, E.J., Wilkinson, S.J., Cronin, G.M., Walk, C.L., Cowieson, A.J. 2012. The effect of marine calcium source on broiler leg integrity. Proc. 23rd Ann. Aust. Poult. Sci. Symp., Sydney, N.S. Wales, Australia, 19-22 February, 85-88.
  • Cirik, S., ve Gökpınar, Ş., 1993. Plankton bilgisi ve kültürü. Ege Üniversitesi Su Ürünleri Fakültesi Yayınları, 47, 131-133.
  • Comtex. Animal Feed Supplements Market Demand Status with Industry Growth 2020 Latest Trends, Top Manufacturers, Analysis by Market Size and Global Share and Forecast to 2026. Available online: https://www.marketwatch.com/press-release/animal-feed-supplements-market-demand-status-with- industry-growth-2020-latest-trends-top-manufacturers-analysis-by-market-size-and-global-share-and- forecast-to-2026-2020-05-15 (Erişim tarihi: 25 Mayıs 2020).
  • Durrani, F. R., & Khalil, I. A. (1989). Green algae as a protein source in animal feed. Pakistan Journal of Scientific and Industrial Research (Pakistan).
  • El-Deek, A.A.; Al-Harthi, M.A.; Abdalla, A.A.; Elbanoby, M.M. The use of brown algae meal in finisher broiler diets. Egypt. Poult. Sci. 2011, 3, 767–781.
  • Evans, F.D.; Critchley, A.T. Seaweeds for animal production use. J. Appl. Phycol. 2014, 26, 891–899.
  • Fleurence, J. (1999). Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Technology, 10(1), 25-28.4.
  • Guiry, M.D.; Guiry, G.M.; AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. Available online: https://www.algaebase.org (Erişim tarihi: 6 Aralık 2020).
  • Jensen, A. (1966). Carotenoids of norwegian brown seaweeds and seaweed meals. Norwegian Institute of Seaweed Research, Report No: 31, 1-138.
  • Keskin, E., Durgun, Z. ve Kocabatmaz, M. 1995. Gelişmekte olan Japon bıldırcınlarında yosun ekstraktının hematolojikal etkileri. Vet. Bil. Derg. 11(1): 105-110.
  • Manyi-Loh, C., Mamphweli, S., Meyer, E., Okoh, A., Makaka, G., and Simon, M., 2013. Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy. International journal of environmental research and public health, 10(9), 4390-4417.
  • Mišurcová, L. Chemical composition of seaweeds. In Handbook of Marine Macroalgae: Biotechnology and Applied Phycology; John Wiley & Sons: West Sussex, UK, 2011; pp. 173–192.
  • Okan, F., Uluocak, A. N., Canoğulları, S., Ayaşan, T., 1998. Büyütme Döneminde Değişik Düzeylerde Ham Protein ve Enerji İçeren Karma Yemlerle Beslenmenin Bıldırcınların Yumurta Verim Özelliklerine Etkileri. Çukurova Üniversitesi Ziraat Fakültesi Dergisi, 13 (2); 57- 66 s.
  • Peng, Y.; Hu, J.; Yang, B.; Lin, X.P.; Zhou, X.F.; Yang, X.W.; Liu, Y. Chemical composition of seaweeds. In Seaweed Sustainability: Food and Non-Food Applications; Academic Press: Cambridge, MA, USA, 2015; pp. 79–124.
  • Piconi, P. Edible Seaweed Market Analysis. Available online: http://www.islandinstitute.org/edible-seaweed- market-analysis-2020
  • Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., and Tredici, M. R., 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor. Biotechnology and bioengineering, 102(1), 100-112.
  • Sun JianFeng; Song HongLi; Zhao Jun; Xiao Yu; Qi Ru; Lin YingTing, (2010). Effects of different dietary levels of Enteromorpha prolifera on nutrient availability and digestive enzyme activities of broiler chickens. Chinese J. Anim. Nutr., 22 (6): 1658-1664.
  • Ventura, M.R., Castanon, J.I.R., McNab, J.M. 1994. Nutritional value of seaweed (Ulva rigida) for poultry. Anim. Feed Sci. Technol., 49 (1/2): 87-92.
  • Wang ShuBai; Shi XuePing; Zhou ChuanFeng; Lin YingTing, 2013. Entermorpha prolifera: effects on performance, carcass quality and small intestinal digestive enzyme activities of broilers. Chinese J. Anim. Nutr., 25 (6): 1332-1337.
  • Wong, C. Y. P., &. Cheung, Y. W (2000). A survey of market practitioners’ views on exchange rate dynamics. Journal of international economics, 51(2), 401-419.
  • Zahroojian, N., Moravej, H., & Shivazad, M. (2011). Comparison of marine algae (Spirulina platensis) and synthetic pigment in enhancing egg yolk colour of laying hens. British poultry science, 52(5), 584-588.
  • Zhao, J., Yingting, L., Jianfeng, S., Ru, QI, Xaio, Y. 201 1. Effects of different levels of Enteromorpha prolifera in diet on yolk quality, antioxidant ability and serum biochemical indices of laying hense. Chinese Journal of Animal Nutrition.