SİYAH ÜZÜM POSASININ KURUTMA KİNETİĞİNİN İNCELENMESİ

Bu çalışmada siyah Dimrit cinsi üzümün üzüm suyuna işlendikten sonra arta kalan üzüm posasının farklı sıcaklık ve farklı hava akım hızlarında kurutma kinetiği araştırılmıştır. Kurutma işlemi, 40, 50, 60 ve 70 ⁰C sıcaklıklarda; 1.0,1.4 ve 1.8 m/s hava akım hızlarında, ortalama kalınlığı 0.75  cm olan, aynı ağırlıktaki üzüm posası örneklerinin tepsili kurutucuya yerleştirilmesiyle yapılmıştır.  Üzüm posasının kinetik davranışı ince tabaka kurutma şeklinde değerlendirilmiş ve bu davranışın Newton, Page, Modifiye Page, Henderson ve Pabis, Logaritmik, Çift terimli, Üstelçift, Difüzyon, Modifiye Henderson ve Pabis, Verma ve Midilli olmak üzere onbir farklı modele uyumluluğu incelenmiştir. Bu modellerin uyumluluk derecesi, her deneme için gözlenen ve tahmin edilen nem oranlarının hesaplanmasından sonra regresyon katsayıları, ortalama hata kareler toplamı ve kikare katsayıları karşılaştırılarak saptanmış ve istatistiksel analizler sonucunda Midilli, Çift terimli, Modifiye Henderson ve Pabis, ve Verma modellerinin üzüm posasının kinetik davranışına uyduğu gözlemlenmiştir. İncelenen kurutma sıcaklığı aralığında etkin difüzyon katsayısı (Deff) 2.85x10-10 ve 1.67x10-9 m2/s aralığında değişmekte olup, Difüzyon katsayısının 1.0 m/s hava akış hızı için kurutma sıcaklığı ile ilişkisi  Arrhenius teorisi ile doğrulanmıştır. Üzüm posasının aktifleşme enerjisi 26,26 kJ olarak hesaplanmıştır.

EXAMINATION OF DRYING KINETICS FOR RED GRAPE POMACE

 In this study, the drying kinetics of red grape pomace processed as a by product during grape juice production of the Black Dimrit grape species was investigated as a function of different drying conditions. Drying process was carried out at temperatures of 40, 50, 60 ve 70 ⁰C and air velocities of 1.0, 1.4 and 1.8 m/s with an initial sample thickness  of  0.75 cm  on average until constant weight was attained. The kinetic behaviour of red grape pomace was considered as thin layer drying process. In order to evaluate the effective diffusivity, eleven models of diffusion including Newton, Page, Modified Page, Henderson & Pabis, Logaritmic, Two term, Exponential two term, Diffusion, Modified Henderson & Pabis, Verma and Midilli were then performed. The assessment of the performance was made by the comparison of the coefficients of determination, root of mean square error and reduced chi-square between the observed and predicted moisture ratios. Statistical analysis resulted in the compatibility of Midilli, Two term, Modified Henderson & Pabis and Verma models for the experimental conditions. The effective mositure diffusivity varied from 2.85x10-10 to 1.67x10-9 m2/s over the temperature and air velocity range. Temperature dependence of diffusivity was well reported for the air velocity of 1 m/s by an Arrhenius type relationship. The activation energy of red grape pomace was calculated as 26,26 kJ/mol.  

___

  • Arvanitoyannis, I. S., Ladas, D., and Mavromatis, A., 2006, Potential uses and applications of treated wine waste: A review, International Journal of Food Science Technology., 41, 475–487.
  • Celma, A. R., Rojas, S., and Lopez-Rodriguez, F., 2007, Waste-to-energy possibilities for industrial olive and grape by-products in Extremadura, Biomass Bioenergy, 31, 522–534.
  • Ekici, L., 2011, Determination of Some Biological Properties of Anthocyanin Based Pigments Extracted From Grape Skin, Black Carrot and Red Cabbage and Their Usage in Some Food Products as Colorants, Ph. D. Thesis, Erciyes University, Graduate School of Natural and Applied Sciences
  • Doymaz, I., Gorel, O., and Akgun, N. A., 2004, Drying characteristics of the solid byproduct of olive oil extraction, Biosystem Engineering., 88, 213–219.
  • Freire, F., Figueiredo, A., and Ferrao, P., 2001, Modelling high temperature, thin layer, drying kinetics of olive bagasse, Journal of Agricultural Engineering Research, 78, 397–406.
  • Kaur, D., Wani, A. A., Sogi, D. S., and Shivhare, U. S., 2006, Sorption isotherms and drying characteristics of tomato peel isolated from tomato pomace, Drying Technology, 24, 1515–1520.
  • Arora, S., Bharti, S., and Sehgal, V. K., 2006, Convective drying kinetics of red chillies, Drying Technology, 24, 189–193.
  • Movagharnejad, K., and Nikzad, M., 2007, Modeling of tomato drying using artificial neural network, Computer Electronics Agriculture, 59, 78–85.
  • Hossain, M. A., Woods, J. L., and Bala, B. K., 2007, Single-layer drying characteristics and colour kinetics of red chilli, International Journal of Food Science and Technology, 42, 1367–1375.
  • Jumah, R., Al-Kteimat, E., Al-Hamad, A., and Telfah, E., 2007, Constant and intermittent drying characteristics of olive cake, Drying Technology, 25, 1421–1426.
  • Shiby, V. K., and Mishra, H. N., 2007, Thin layer modeling of recirculatory convective air drying of curd (Indian yoghurt), Food Bioproducts Processing, 85(C3), 193–201.
  • Singh, B., Panesar, P. S., and Nanda, V., 2006, Utilization of carrot pomace for the preparation of a value added product, World Journal of Dairy Food Science, 1, 22–27.
  • Sharma, G. P., Verma, R. C., and Pathare, P., 2005, Mathematical modeling of infrared radiation thin layer drying of onion slices, Journal of Food Engineering, 71, 282–286.
  • Sun, J., Hu, X., Zhao, G., Wu, J., Wang, Z., Chen, F., and Liao, X., 2007, Characteristics of thin-layer infrared drying of apple pomace with and without hot air pre-drying, Food Science and Technology International, 13, 91–97
  • Sutar, P. P. and Prasad, S., 2007, Modeling microwave vacuum drying kinetics and moisture diffusivity of carrot slices, Drying Technology, 25, 1695–1702.
  • Crank, J. (1975). The Mathematics of Diffusion, Oxford University Press, Oxford.
  • Ramesh, M. N., Wolf, W., Tewini, D., and Jung, G., 2001, Influence of processing parameters on the drying of spice paprika, Journal of Food Engineering, 49, 63–72.
  • Erbay, Z., 2008, The Investigation of Modelling, Optimization and Exergetic Analysis of Drying of Olive Leaves, M. Sc. Thesis, Ege University Graduate School and Natural Applied Sciences.
  • Sarsavadia, P. N., Sawhney, R. L., Pangavhane, D. R., and Singh, S. P., 1999, Drying behaviour of brined onion slices, Journal of Food Engineering, 40, 219–226.
  • Lahsasni, S., Kouhila, M., Mahrouz, M., Idlimam, A., and Jamali, A., 2004, Thin layer convective solar drying and mathematical modelling of prickly pear peel (Opuntina ficus indica), Energy, 29, 211–224.
  • Faustino, J. M. F., Barroca, M. J., and Guine´, R. P. F., 2007, Study of the drying kinetics of green bell pepper and chemical characterization, Food Bioproducts Processing, 85(C3), 163–170.
  • Lomauro, C. J., Bakshi, A. S., and Labuza, T. P., 1985, Moisture transfer properties of dry and semimoist foods, Journal of Food Science, 50, 397–400.
  • Doymaz, I., Akgun, N.A., 2009, Study of Thin-Layer Drying of Grape Wastes, Chemical Engineering Communications, 196:7, 890-900
  • Jena, S., and Das, H., 2007, Modelling for vacuum drying characteristics of coconut presscake,Journal of Food Engineering, 79, 92–99.
  • Lopez, A., Iguaz, A., Esnoz, A., and Virseda, P., 2000, Thin layer drying behaviour of vegetable wastes from wholesale market, Drying Technology, 18, 995–1006.
  • Srikiatden, J. and Roberts, J. S., 2006, Measuring moisture diffusivity of potato and carrot (core and cortex) during convective hot air and isothermal drying, Journal of Food Engineering, 49, 143–152.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi