KONFORLU SÜRÜŞ İÇİN ULUSLARARASI DÜZGÜNSÜZLÜK İNDEKSİ SINIR DEĞERLERİNİN BELİRLENMESİ

Karayolu üstyapıları, sürüş sırasında yol kullanıcılarına konforu ve güvenliği sağlayan önemli bir bileşendir. Bu nedenle, karayolu işletiminden sorumlu otoritelerce, üstyapıların hizmet düzeylerinin iyi durumda olması oldukça önemsenmektedir. Çalışmada, bitümlü sıcak karışım kaplamalı devlet yollarında, otomobiller için üstyapıların mevcut hizmet düzeyi ile sürüş konforu arasındaki ilişkilerin araştırılması ve ISO 2631 standardında açıklanan konfor kriterlerine göre IRI’nın sınır değerlerinin belirlenmesi amaçlanmıştır. Bu amaçla, şehirlerarası bağlantı sağlayan yaklaşık 80 km uzunluğunda bir devlet yolunda IRI ölçümleri yapılmış ve yol kesimlere ayrılarak değerlendirilmiştir. Aynı yol kesimlerinde, farklı sürüş hızlarında taşıt içerisinde sürücü koltuğu üzerinden düşey doğrultuda titreşim verileri ölçülmüştür. Ölçümler ISO 2631 kodlu standarda göre değerlendirilerek awz değerleri bulunmuştur. Değerlendirilen yol kesimine ait ortalama sürüş hızı ve awz verileri ile IRI arasında yapay sinir ağı tekniği kullanılarak matematiksel model geliştirilmiştir. Geliştirilen model aracılığıyla ISO standardında belirtilen konfor seviyelerine bağlı olarak farklı sürüş hızları için IRI’nın sınır değerleri belirlenmiştir. Analizler sonucunda, konforlu bir sürüş için hız arttıkça IRI sınır değerlerinin azaldığı tespit edilmiştir.

DETERMINATION OF INTERNATIONAL ROUGHNESS INDEX LIMIT VALUES FOR COMFORTABLE RIDING

Highway pavements are an important component that provides comfort and safety for road users while riding. Therefore, by the authorities responsible for road operation, it is quite important that the level of service of the pavements is in good condition. In the study, it was aimed to investigate the relationship between the existing serviceability level of the pavements and the ride comfort for passenger cars, and to determine the limit values of IRI according to the comfort criteria described in the ISO 2631 standard. For this purpose, IRI measurements were made on a state road about 80 km long providing intercity connections and the road was divided into sections evaluated. In the same road sections, vibration data were measured in the vertical direction over the driver's seat in the vehicle at different ride speeds. The measurements were evaluated according to the ISO 2631 coded standard and the awz values were found. A mathematical model was developed using the artificial neural network method between the average ride speed and awz data of the assessed road sections, and the IRI data. By means of the developed model, the limits of IRI have been determined for different ride speeds depending on the comfort levels specified in the ISO standard. As a result of the analyses, it was determined that as the ride speed increases for comfortable riding, the IRI limit values decrease.

___

  • Abudinen, D., Fuentes, L.G., Carvajal Muñoz, J.S., 2017. Travel Quality Assessment of Urban Roads Based on International Roughness Index. Transportation Research Record: Journal of The Transportation Research Board, 2612, 1-10.
  • Ahlin, K., Granlund, N.O.J., 2002. Relating Road Roughness and Vehicle Speeds To Human Whole Body Vibration and Exposure Limits. International Journal of Pavement Engineering, 3, 207-216.
  • ASTM 2008. Standard Practice For Computing International Roughness Index of Roads From Longitudinal Profile Measurements. ASTM E 1923-08. West Conshohocken, Pa: ASTM International.
  • ASTM 2009. Standard Test Method For Measuring The Longitudinal Profile of Traveled Surfaces With An Accelerometer Established Inertial Profiling Reference. ASTM E 950. West Conshohocken, Pa: ASTM International.
  • Attoh-Okine, N.O., 1999. Analysis of Learning Rate and Momentum Term In Backpropagation Neural Network Algorithm Trained to Predict Pavement Performance. Advances in Engineering Software, 30, 291-302.
  • Cantisani, G., Loprencipe, G., 2010. Road Roughness and Whole Body Vibration: Evaluation Tools and Comfort Limits. Journal of Transportation Engineering, 136, 818-826.
  • Carey Jr, W. N., Irick, P. E., 1960. The Pavement Serviceability-Performance Concept. Highway Research Board Bulletin, 40-58.
  • Duarte, M. L. M. , De Melo, G. C., 2018. Influence of Pavement Type and Speed on Whole Body Vibration (WBV) Levels Measured on Passenger Vehicles. Journal of The Brazilian Society of Mechanical Sciences and Engineering, 40.
  • Griffin, M. J., 2007. Discomfort From Feeling Vehicle Vibration. Vehicle System Dynamics, 45, 679-698.
  • Griffin, M. J., 2012. Handbook Of Human Vibration, London, Uk, Academic Press.
  • Haas, R., Hudson, W. R., Zaniewski, J. P., 1994. Modern Pavement Management, Malabar, Florida, Usa, Krieger Pub. Co.
  • ISO 1997. Mechanical Vibration and Shock - Evaluation Of Human Exposure To Whole-Body Vibration, Part 1: General Requirement. ISO 2631-1. Geneva, Switzerland: ISO.
  • ISO 2005. Human Response To Vibration - Measuring Instrumentation. ISO BS EN 8041:2005. Geneva, Switzerland: ISO.
  • Kecman, V., 2001. Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models, Massachussetts, Usa, Mit Press.
  • Kim, M. S., Kim, K. W. , Yoo, W. S. 2011. Method To Objectively Evaluate Subjective Ratings Of Ride Comfort. International Journal Of Automotive Technology, 12, 831-837.
  • Kırbaş, U. , Karaşahin, M., 2016. Investigation of Ride Comfort Limits on Urban Asphalt Concrete Pavements. International Journal of Pavement Engineering, 1-7.
  • Perera, R. W., Kohn, S. D. 2005. Quantification of Smoothness Index Differences Related To Long-Term Pavement Performance Equipment Type. Georgetown Pike: Federal Highway Administration.
  • Sayers, M. W., 1995. on The Calculation of International Roughness Index From Longitudinal Road Profile. Transportation Research Record, 1501, 1-12.
  • Sayers, M. W., Gillespie, T. D., Queiroz, C. A. V., 1986. The International Road Roughness Experiment: Establishing Correlation and A Calibration Standard For Measurements, Washington, D.C., U.S.A., The World Bank.
  • Sayers, M. W., Karamihas, S. M., 1996. Interpretation of Road Roughness Profile Data. UMTRI 96-19, Final Report, Federal Highway Administration.
  • Sayers, M. W., Karamihas, S. M., 1998. The Little Book of Profiling, Michigan, University of Michigan.
  • Shahin, M. Y., 2005. Pavement Management For Airports, Roads, and Parking Lots, New York, Springer.
  • Terzi, S., 2007. Modeling The Pavement Serviceability Ratio of Flexible Highway Pavements By Artificial Neural Networks. Construction and Building Materials, 21, 590-593.
  • Terzi, S., 2013. Modeling For Pavement Roughness Using The Anfis Approach. Advances In Engineering Software, 57, 59-64.
  • Wang, F., Easa, S., 2016. Analytical Evaluation of Ride Comfort on Asphalt Concrete Pavements. Journal of Testing and Evaluation, 44, 1671-1682.
  • Yu, J., Chou, E. Y. J., Yau, J.-T., 2006. Development of Speed-Related Ride Quality Thresholds Using International Roughness Index. Transportation Research Record: Journal of The Transportation Research Board, 1974, 47-53.