GÜMÜŞ AKIM TOPLAYICI MÜREKKEPLERİNDE FRİT BULUNMASININ KATI OKSİT YAKIT HÜCRESİ KATOTLARININ ELEKTROKİMYASAL PERFORMANSINA ETKİSİ

Gümüş (Ag) içeren asıltılar (mürekkepler) orta sıcaklıklarda çalışan katı oksit yakıt hücresi (KOYH) katotları üzerine sıklıkla akım toplayıcı olarak uygulanırlar. Bu mürekkeplere camsı faz (frit) parçacıklarının ısıl işlem sonrasında altlığa iyi yapışma sağlanması amacıyla eklenmesi geleneksel olarak uygulanagelmiştir. Fakat bu parçacıkların Ag mürekkeplerine eklenmelerinin akım toplayıcı mikroyapısı ve performansı üzerindeki etkileri net olarak tespit edilmemiştir. Bu çalışmada gümüş mürekkeplerine frit eklenmesinin La0.6Sr0.4FeO3 (LSF) ince film katotlarının elektrokimyasal performansına etkisi sunulmaktadır. Mikroyapısal analizler frit etkisinin Ag akım toplayıcı katmanını yoğunlaştırdığını göstermektedir. Ag yerine eklenen camsı faz Ag /LSF ince film katot arayüzey alanını azaltmakta ve yüksek ohmik dirence sebep olmaktadır. Camsı faz ayrıca LSF yüzeyini mühürlemekte, böylece yüksek polarizasyon dirençlerine yol açmaktadır. Simetrik yarı-hücreler üzerinde gerçekleştirilen elektrokimyasal empedans spektroskopisi ölçümleri frit içermeyen Ag mürekkepleri kullanıldığında itriya katkılı zirkonya elektrolitin özdirenci ile örtüşen ohmik dirençler ve kabul edilebilir katot polarizasyon dirençlerinin (örn., 700 ℃ ve durağan hava ortamında 0.5 Ωcm2) elde edilebildiğini göstermektedir. 

EFFECT OF FRIT CONTENT IN THE SILVER CURRENT COLLECTOR INKS ON THE ELECTROCHEMICAL PERFORMANCE OF SOLID OXIDE FUEL CELL CATHODES

Silver (Ag) inks are often used as precursors to form current collector layers on the intermediate-temperature solid oxide fuel cell (SOFC) cathodes. It has been common practice to add glassy phase (frit) particles into the Ag inks to achieve good adhesion between the current collector and the cathode layers upon firing. However, insufficient attention has been given to the effects of frit content on the microstructure and the current collecting properties of Ag layers. This study presents the effect of frit addition on the measured electrochemical performance of La0.6Sr0.4FeO3 (LSF) thin film cathodes. Microstructural analyses reveal that frit addition significantly densifies the Ag current collector layer. The glassy phase replacing Ag reduces the contact area between the Ag particles and the LSF thin film cathode, resulting in increased ohmic resistances. The glassy phase also seals the electrocatalytic surface of the LSF thin film, thus enhancing the cathode polarization resistances. Electrochemical impedance spectroscopy measurements on symmetrical half-cells reveal that ohmic resistances matching the resistivity of the yttria stabilized zirconia electrolyte (YSZ) and acceptable cathode polarization resistances (e.g., 0.5 Ωcm2 at 700℃ in air) can be obtained when frit-free Ag current collector inks are used. 

___

  • Chen, X., Tao, Z., Hou, G., Xu, N., Zhang, Q., 2015. La0.7Sr0.3FeO3−δ composite cathode enhanced by Sm0.5Sr0.5CoO3−δ impregnation for proton conducting SOFCs. Electrochim. Acta. 165, 142–148.
  • Fergus, J. W., 2005. Sealants for solid oxide fuel cells. J. Power Sources. 147, 46–57.
  • Gong, Y., Qin, C., Huang, K., 2012. Can Silver Be a Reliable Current Collector for Electrochemical Tests? ECS Electrochemistry Letters. 2, F4-F7.
  • Guo, Y. M., Zhou, Y. B., Chen, D. J., Shi, H. G., Ran, R., Shao, Z.P., 2011. Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ electrodes in solid oxide fuel cells. J. Power Sources. 196, 5511-5519.
  • Kontoulis, I., Steele, B.C.H. 1991. Determination of oxygen diffusion in solid Ag by an electrochemical technique. Solid State Ionics. 47, 317-324.
  • Kosacki, I., Rouleau, C. M., Becher, P. F., Bentley, J., Lowndes, D. H., 2005. Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics. 176, 1319 – 1326.
  • Kwon, O.H., Choi, G.M., 2006. Electrical conductivity of thick film YSZ. Solid State Ionics. 177, 3057-3062.
  • Li, M., Wang, Y., Wang, Y., Chen, F., Xia, C., 2014. Bismuth Doped Lanthanum Ferrite Perovskites as Novel Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces. 6, 11286−11294.
  • Lyskov, N. V., Kolchina, L. M., Galin, M. Z., Mazo, G. N., 2018. Development of lanthanum-doped praseodymium cuprates as cathode materials for intermediate-temperature solid oxide fuel cells. Solid State Ionics. 319; 156-161.
  • Patrakeev, M. V., Leonidov, I. A., Kozhevnikov, V. L., Poeppelmeier, K.R., 2005. p-Type electron transport in La1−xSrxFeO3−δ at high temperatures J. Solid State Chem. 178; 921–927.
  • Primdahl, S., Mogensen, M. 1999. Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes. J. Electrochem. Soc. 146; 2827-2833.
  • Rane, S. B., Seth, T., Phatak, G. J., Amalnerkar, D. P., 2004. Effect of inorganic binders on the properties of silver thick films. J. Mater. Sci. Mater. Electron. 15, 103-106.
  • Sarikaya, A., Petrovsky, V., Dogan, F. Development of a silver based stable current collector for solid oxide fuel cell cathodes in: proceedings of the materials research society fall meeting 2011, Boston, United States, November 28-December 2, vol. 1385, Cambridge University Press, 2012, p. c07.
  • Sarikaya, A., Petrovsky, V., Dogan, F., 2012. Silver composites as highly stable cathode current collectors for solid oxide fuel cells. J. Mater. Res. 27, 2024-2029.
  • Tatko, M., Mosiałek, M., Dudek, M., Nowak, P., Kędra, A., Bielańska E., 2015. Composite cathode materials Sm0.5Sr0.5CoO3–La0.6Sr0.4FeO3for solid oxide fuel cells. Solid State Ionics. 271, 103–108.
  • Wachsman, E., Ishihara, T., Kilner, J., 2014. Low-temperature solid-oxide fuel cells. MRS Bulletin. 39, 773-779.
  • West, M., Manthiram, A., 2015. Synthesis of 3-dimensional silver networks and their application in solid oxide fuel cells. Int. J. Hydrogen Energy. 40, 4234-4240.
  • Zhu, J.H., Ghezel-Ayagh, H., 2017. Cathode-side electrical contact and contact materials for solid oxide fuel cell stacking: A review. Int. J. Hydrogen Energy. 42, 24278-24300