ASİMETRİK EŞ-DÜZLEMSEL ŞERİT BESLEMELİ ANTEN İLE MOTOR YAĞ SEVİYE VE KULLANIM ÖMRÜ TESPİTİ

Motorun aşınmasını ve ısınmasını engelleyen motor yağ (MY) ömrü araç performansı açısından büyük bir öneme sahiptir. Bu çalışma ile araç MY seviye ve kullanım ömrünü belirleyebilecek bir sensör gerçekleştirilmiştir. MY ömrü ve seviye tespiti için iki farklı yağ numunesi içerisine önerilen anten yerleştirilerek geri dönüş kaybı grafiğindeki rezonans frekansı ile bant genişlikleri incelenmiştir. Önerilen anten ile MY ömrünün gerçek zamanlı tespitinin mikrodalga frekanslarda gerçekleştirilmiştir. Bu teknikle MY değişim periyotları ile ilgili daha kesin bir çözümün gerçekleştirilmesi hedeflenmiştir. Sensör için Asimetrik Eş-düzlemsel Şerit (AEŞ) beslemeli mikroşerit anten tasarımı gerçekleştirilmiştir. Tasarlanan antenin sıvı dışındaki çalışma frekansı 2.4 GHz bant genişliği ise 150 MHz olarak ölçülmüştür. Antenin MY içerisine 60 mm ve 70 mm uzunluklarında yerleştirildiğinde rezonans frekansı ve bant genişliğinde anlamlı bir değişim meydana gelmiştir. Bu antenin MY içerisindeki 60 mm uzunluk seviyesi için 0 km MY numunesinde rezonans frekansı ve bant genişlikleri sırasıyla 2,20 GHz ile 120 MHz, 10000 km için sırasıyla 2,18 GHz ile 130 MHz olarak ölçülmüştür.

ENGİNE OİL LİFETİME AND LEVEL DETECTİON WİTH ASYMMETRIC CO-PLANAR STRIP-FED ANTENNA

Determination of engine oil (EO) lifetime, which prevents wear and heating of the engine, has great importance in terms of vehicle performance. In this study, a sensor antenna was designed to determine the level and service life of vehicle EO. For EO lifetime and level detection, the proposed antenna was placed in two different oil samples and the resonance frequency and bandwidth in the return loss graph were examined. Real-time detection of EO lifetime was performed at microwave frequencies with the proposed antenna. This technique, it is aimed to realize a more precise solution regarding EO change periods. Asymmetrical Co-planar Strip (ACS) fed microstrip antenna design has been carried out for the sensor. The operating frequency of the designed antenna without liquid was measured as 2.4 GHz and the bandwidth was measured as 150 MHz. A significant change occurred in the resonance frequency and bandwidth when the antenna was placed in the EO at 60 mm and 70 mm lengths. For the 60mm length level of this antenna in the EO, the resonance frequency and bandwidths of the 0 km EO sample were measured as 2.20 GHz and 120 MHz, and for 10000 km, 2.18 GHz, and 130 MHz, respectively.

___

  • Abdelwahab, H., Ebrahimi, A., Tovar-Lopez, F. J., Beziuk, G., & Ghorbani, K. (2021). Extremely sensitive microwave microfluidic dielectric sensor using a transmission line loaded with shunt LC resonators. Sensors, 21(20), 6811.
  • Abdulkarim, Y. I., Deng, L., Karaaslan, M., Altıntaş, O., Awl, H. N., Muhammadsharif, F. F., Liao, C., Unal, E., & Luo, H. (2020). Novel metamaterials-based hypersensitized liquid sensor integrating omega-shaped resonator with microstrip transmission line. Sensors, 20(3), 943.
  • Akgöl, O. (2018). PCB Dairesel Yama Anten Tabanlı Etanol ve Metanol Algılayıcı Tasarımı. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 287-296.
  • Al-Gburi, A. J. A., Rahman, N. A., Zakaria, Z., & Palandoken, M. (2023). Detection of Semi-Solid Materials Utilizing Triple-Rings CSRR Microwave Sensor. Sensors, 23(6), 3058.
  • Al-Mudhafar, A. A., & Ra’ed, A. M. (2022). High-Precise Microwave Active Antenna Sensor (MAAS) formulated for sensing liquid properties. Sensors and Actuators A: Physical, 341, 113567.
  • Bakır, M., Dalgaç, Ş., Karaaslan, M., Karadağ, F., Akgol, O., Unal, E., Depci, T., & Sabah, C. (2019). A comprehensive study on fuel adulteration sensing by using triple ring resonator type metamaterial. Journal of the Electrochemical Society, 166(12), B1044.
  • Bakır, M., & Yaşar, İ.(2022). Metamalzeme Tabanlı Hassas Süt ve Sıvı Sensörü Uygulaması. Avrupa Bilim ve Teknoloji Dergisi, 10-16.
  • Bhatti, M. H., Jabbar, M. A., Khan, M. A., & Massoud, Y. (2022). Low-cost microwave sensor for characterization and adulteration detection in edible oil. Applied Sciences, 12(17), 8665.
  • Bouchalkha, A., & Karli, R. (2019). Planar Microstrip Antenna Sensor for pH Measurements. 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA),
  • Cebeci, T. Motor Yaği Analiz Yöntemi İle Motor Yaği Kullanim Sürelerinin İyileştirilmesi.(2022). Soma Meslek Yüksekokulu Teknik Bilimler Dergisi, 1(33), 24-35.
  • Chuma, E. L., Iano, Y., Fontgalland, G., & Roger, L. L. B. (2018). Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator. IEEE Sensors Journal, 18(24), 9978-9983.
  • Dalgac, S., Akdogan, V., Kiris, S., Incesu, A., Akgol, O., Unal, E., Basar, M. T., & Karaaslan, M. (2021). Investigation of methanol contaminated local spirit using metamaterial based transmission line sensor. Measurement, 178, 109360.
  • Dalgaç, Ş., Karadağ, F., Bakır, M., Akgöl, O., Ünal, E., & Karaaslan, M. (2021). Chiral metamaterial-based sensor applications to determine quality of car lubrication oil. Transactions of the Institute of Measurement and Control, 43(7), 1640-1649.
  • Dinçer, F., Delihacıoğlu, K., Tümkaya, M. A., Karaaslan, M., & Sabah, C. (2017). Akaryakıt sektörü için metamalzeme tabanlı sensör tasarımı ve uygulaması.
  • Groumpas, E. I., Koutsoupidou, M., & Karanasiou, I. S. (2022). Biomedical Passive Microwave Imaging and Sensing: Current and future trends [Bioelectromagnetics]. IEEE Antennas and Propagation Magazine, 64(6), 84-111.
  • Iqbal, A., Smida, A., Saraereh, O. A., Alsafasfeh, Q. H., Mallat, N. K., & Lee, B. M. (2019). Cylindrical dielectric resonator antenna-based sensors for liquid chemical detection. Sensors, 19(5), 1200.
  • Islam, M. R., Islam, M. T., Bais, B., Almalki, S. H., Alsaif, H., & Islam, M. S. (2022). Metamaterial sensor based on rectangular enclosed adjacent triple circle split ring resonator with good quality factor for microwave sensing application. Scientific reports, 12(1), 6792.
  • Kayal, S., Shaw, T., & Mitra, D. (2020). Design of metamaterial-based compact and highly sensitive microwave liquid sensor. Applied Physics A, 126(1), 1-9.
  • Kopmaz, C. (2020). Anten tabanlı mikrodalga sensörlerin çeşitli alanlardakiuygulamaları İskenderun Teknik Üniversitesi/Mühendislik ve Fen Bilimleri Enstitüsü …].
  • Kuzu, A. (2019). PCB dikdörtgen yama anten ve monopol anten tabanlı çok amaçlı sıvı sensörü uygulamaları İskenderun Teknik Üniversitesi/Mühendislik ve Fen Bilimleri Enstitüsü …].
  • Lee, K., Hassan, A., Lee, C. H., & Bae, J. (2017). Microstrip patch sensor for salinity determination. Sensors, 17(12), 2941.
  • Lopato, P., & Herbko, M. (2018). A circular microstrip antenna sensor for direction sensitive strain evaluation. Sensors, 18(1), 310.
  • Low, J.-H., Chee, P.-S., Lim, E.-H., & Lee, K.-Y. (2020). Compact organic liquid dielectric resonator antenna for air pressure sensing using soft material. Scientific reports, 10(1), 1-10.
  • Meyne, N., Cammin, C., & Jacob, A. F. (2014). Accuracy enhancement of a split-ring resonator liquid sensor using dielectric resonator coupling. 2014 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON),
  • Meyne, N., Latus, S., & Jacob, A. F. (2014). Corrugated coplanar transmission-line sensor for broadband liquid sample characterization. GeMiC 2014; German Microwave Conference,
  • Mosbah, S., Zebiri, C., Sayad, D., Elfergani, I., Bouknia, M. L., Mekki, S., Zegadi, R., Palandoken, M., Rodriguez, J., & Abd-Alhameed, R. A. (2022). Compact and Highly Sensitive Bended Microwave Liquid Sensor Based on a Metamaterial Complementary Split-Ring Resonator. Applied Sciences, 12(4), 2144.
  • née Haase, N. M., Fuge, G., Trieu, H. K., Zeng, A.-P., & Jacob, A. F. (2015). Miniaturized transmission-line sensor for broadband dielectric characterization of biological liquids and cell suspensions. IEEE Transactions on Microwave Theory and Techniques, 63(10), 3026-3033.
  • Omer, A. E., Shaker, G., Safavi-Naeini, S., Ngo, K., Shubair, R. M., Alquie, G., Deshours, F., & Kokabi, H. (2020). Multiple-cell microfluidic dielectric resonator for liquid sensing applications. IEEE Sensors Journal, 21(5), 6094-6104.
  • Parvathi, K. S., & Gupta, S. R. (2022). Ultrahigh-sensitivity and compact EBG-based microwave sensor for liquid characterization. IEEE Sensors Letters, 6(4), 1-4.
  • Sanders, J. W., Yao, J., & Huang, H. (2015). Microstrip patch antenna temperature sensor. IEEE Sensors Journal, 15(9), 5312-5319.
  • Soffiatti, A., Max, Y., G. Silva, S., & M. de Mendonça, L. (2018). Microwave metamaterial-based sensor for dielectric characterization of liquids. Sensors, 18(5), 1513.
  • Tamer, A. (2019). İletim hatları ve metamalzemeler kullanılarak legal–illegal benzin ve mazot ayrıştırılması İskenderun Teknik Üniversitesi/Mühendislik ve Fen Bilimleri Enstitüsü …].
  • Uysal, E., Ercek, E., Sabah, C., Nesimoğlu, T. (2021). Kıbrıs, O. D. T. Ü. K., & Kampusu, E.-E. M. B. Varaktör Diyotlar ile Yüksek Oranda Frekansı Ayarlanabilir Elmas Şekilli Metamalzeme Rezonatör.
  • Withayachumnankul, W., Tuantranont, A., Fumeaux, C., & Abbott, D. (2013). Metamaterial-based microfluidic sensor for dielectric characterization. Sensors and Actuators A: Physical, 189, 233-237.
  • Zhu, L., Li, W., Han, X., & Peng, Y. (2020). Microfluidic flexible substrate integrated microstrip antenna sensor for sensing of moisture content in lubricating oil. International Journal of Antennas and Propagation, 2020.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi