Termoelektrik Soğutucunun Modelleme Çalışması ve Performans İncelemesi

Termoelektrik soğutucular elektronik, medikal ve gıda endüstrisi uygulama alanlarında yaygın olarak kullanılmaktadır. İki farklı malzemeden oluşan kapalı bir devreden sadece küçük bir akım geçirerek herhangi bir hareketli parça kullanmadan da bir soğutma etkisi elde edilebilir. Bu etkiye Peltier etkisi, bu prensibe göre çalışan soğutucuya ise termoelektrik soğutucu denir. Bu sistemler, biri soğuk diğeri sıcak iki termal iletken plaka arasına sıkıştırılmış birkaç termoelektrik bacaktan oluşurlar. Termoelektrik soğutucular, düşük performans katsayıları (COP) nedeniyle şu anda buhar sıkıştırmalı soğutma sistemleri ile rekabet edememektedir. Ancak bazı uygulamalarda küçük boyutları, sadeliği, sessizliği ve güvenilirliği nedeniyle tercih edilmişlerdir. Bu çalışmada, maksimum soğutma gücü 50 W olan, 40mmx40mmx3.6mm boyutlarında bir termoelektrik soğutucu hesaplamalı akışkanlar dinamiği programı kullanılarak modellenmiştir. Ayrıca, bir termoelektrik soğutucunun performansı araştırılmıştır. Yapılan hesaplamalarda seramik plakalar arasındaki sıcaklık farkı ve elektrik akım hesapları yapılmıştır. Ayrıca simülasyondan elde edilen sonuçlar deneysel verilerle karşılaştırılmıştır. Analizlerden elde edilen veriler deneysel sonuçlarla karşılaştırılmış ve birbiriyle uyumlu olduğu görülmüştür. 25 oC ve 50 oC yüzey sıcaklıkları için maksimum performans katsayıları sırasıyla 1.091 ve 1.445 olarak hesaplanmıştır. Genel olarak, aynı sıcaklık farkları için sıcak yüzeylerin sıcaklığı arttıkça termoelektrik soğutucunun COP değeri artmıştır.

Modeling Study and Performance Investigation of a Thermoelectric Refrigerator

Thermoelectric refrigerators are widely used in electronics, medical, and food industry application areas. A refrigeration effect can also be achieved without using any moving parts by merely passing a small current through a closed circuit made up of two dissimilar materials. This effect is called the Peltier effect, and a refrigerator that works on this principle is called a thermoelectric refrigerator. They consist of several thermoelectric legs sandwiched between two thermally conductive plates, one cold and one hot. Thermoelectric refrigerators presently cannot compete with the vapor-compression refrigeration system because of their low- coefficient of performance (COP). However, some applications have been preferred because of their small size, simplicity, quietness, and reliability. In this study, a thermoelectric cooler having a maximum cooling power of 50 W, having a dimension of 40mmx40mmx3.6 mm, is modeled in multi-physics software. Also, the performance of a thermoelectric refrigerator is investigated. It is computed the temperature difference between ceramics plates versus electric current and COP for a temperature difference between ceramics plates. The simulation results are compared with experimental data. The data obtained from the analyses have been compared with the experimental results and found to agree with each other. For the surface temperatures of 25 oC and 50 oC, the maximum coefficients of performance have been computed to be 1.091 and 1.445, respectively. In general, as the temperature of hot surfaces has increased for the same temperature differences, the COP of the thermoelectric cooler has increased.

___

  • Riffat S.B., Ma X., Wilson R. 2006. “Performance simulation and experimental testing of a novel thermoelectric heat pump system”, Applied Thermal Engineering, Vol:26, 494-501.
  • Riffat S.B., Ma X. 2003. “Thermoelectrics: a review of present and potential applications”, Applied Thermal Engineering, Vol:23, 913–935.
  • Rowe D.M. 1995. “CRC handbook of thermoelectrics”, Application of thermoelectric cooling, 617–683.
  • Nassar M., Hegazi A. Mousa M. 2019. “Combined effect of pulsating flow and magnetic field on thermoelectric cooler performance”, Case Studies in Thermal Engineering, Vol:13, 100-103.
  • Lin Z., Hongbo T., Jianlin Y. 2013. “Analysis of optimal heat exchanger size of a thermoelectric cooler for electronic cooling applications”, Energy Conversion and Management, Vol:76, 685–690.
  • Tan S.O., Demirel H. 2015. “Performance and cooling efficiency of thermoelectric modules on server central processing unit and Northbridge”, Computers and Electrical Engineering, Vol:46, 46-55.
  • Gao M., Rowe D. 1999. “Cooling performance of the integrated thermoelectric micro cooler, Solid-State Electronics”, Vol:43, 923–929.
  • Gökçek M., Sahin F. 2017. “Experimental performance investigation of mini channel water cooled-thermoelectric refrigerator”, Case Studies in Thermal Engineering, Vol:10, 54-62.
  • Tan G., Zhao D. 2015. “Study of a thermoelectric space cooling system integrated with phase change material”, Applied Thermal Engineering, Vol:86, 187-198.
  • Xu X., Dessel S.V., Messac A. 2007. “Study of the performance of thermoelectric modules for use in active building envelopes”, Building and Environment Journal, Vol:3, 1489–1502.
  • Chinguwa S., Musora C., Mushiri T. 2018. “The design of portable automobile refrigerator powered by exhaust heat using thermoelectric”, 15th Global Conference on Sustainable Manufacturing, Procedia Manufacturing, Vol:21, 741-748.
  • Huang B.J., Chin C.J., Duang C.L. 2000. “A design method of a thermoelectric cooler, International Journal of Refrigeration”, Vol:23, 208-218.
  • Karimi G., Culham J.R., Kazerouni V. 2011. “Performance analysis of multi-stage thermoelectric coolers”, International Journal of Refrigeration, Vol:34, 2129-2135.
  • Nagy M.J., Buist R.J. 1994. “Effect of heat sink design on thermoelectric cooling performance”, AIP Conference Proceedings, 147-149.
  • Gill P., Murray W., Saunders M. 2002. “SNOPT: An SQP Algorithm for large-scale constrained optimization”, SIAM Review, Vol:12, No:4, 979-1006.
Mühendis ve Makina-Cover
  • ISSN: 1300-3402
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1957
  • Yayıncı: TMMOB MAKİNA MÜHENDİSLERİ ODASI