Helikopterlerde Kullanılan Bir Piston-Prop Motorun Enerji, Ekserji, Termoekolojik, Sürdürülebilirlik, Termoekonomik ve Eksergoekonomik Performans Analizleri

Bu çalışmada, helikopterlerde kullanılan piston-prop motorlar için enerji, ekserji, termoekolojik, sürdürülebilirlik, termoekonomik ve eksergoekonomik analizler açıklanmış ve 190 SHP güce sahip bir piston-prop motor üzerinde bu analizler uygulanmıştır. İlk olarak piston-prop motor bir termodinamik sistem olarak ele alınmış olup buna göre sistemin kontrol hacmi, giriş ve çıkış akışları, denge denklemleri ve ölü hal koşulları belirlenmiştir. Elde edilen bulgulara göre sistemin enerji verimi % 15.51 olarak bulunurken, ekserji verimi % 11 olarak hesaplanmıştır. Sistemin entropi üretimi, sürdürülebilirlik indeksi, termoekolojik performans katsayısı, termoekonomik parametre değeri, kayıp ekserjisine bağlı eksergoekonomik parametre değeri, yıkım ekserjisine bağlı eksergoekonomik parametre değeri ve toplam eksergoekonomik parametre değeri sırasıyla 2,940 W/K, 1.124, 0.161, 2.20 W/TL, 1.29 W/TL, 2.50 W/TL ve 3.79 W/TL bulunmuştur. Analizler sonucunda sisteme giren yakıtın oluşturduğu enerjinin büyük ölçüde kayba ve yıkıma uğradığı görülmüştür. Elde edilen analiz sonuçlarından hareketle, motorun verim ve performansının yükseltilmesine ek olarak sistemdeki kayıpların ve tersinmezliklerin azaltılabilmesi açısından, bu tipteki motorların soğutma teknolojilerinin iyileştirilmesi ile buradaki kayıpların azaltılması ve genel sistem performansının optimize edilmesi önerilebilir.

Energy, Exergy, Thermoecological, Sustainability, Thermoeconomic And Exergoeconomic Performance Analyses of A Piston-Prop Engine Used in Helicopters

In this study, energy, exergy, thermoecological, sustainability, thermoeconomic and exergoeconomic analyzes for piston-prop engines used in helicopters are explained and these analyses are applied on a piston-prop engine with 190 SHP power. Firstly, the piston-prop engine is considered as a thermodynamic system and accordingly the control volume, inlet and outlet flows, balance equations and dead state conditions of the system are determined. According to the findings, the energy efficiency of the system is found as 15.51%, while the exergy efficiency is calculated as 11%. The system’s entropy production, sustainability index, thermoecological performance coefficient, thermoeconomic parameter value, exergoeconomic parameter value due to loss exergy, exergoeconomic parameter value due to destruction exergy and total exergoeconomic parameter value are found as 2,940 W/K, 1.124, 0.161, 2.20 W/TL, 1.29 W/TL, 2.50 W/TL ve 3.79 W/TL, respectively. As a result of the analyses, it is noticed that the energy generated by the fuel entering the system is largely lost and depleted. In view of the obtained results, in addition to increasing the efficiency and performance of the engine, in order to reduce the losses and irreversibility in the system, it can be recommended to improve the cooling technologies of this type of engines.

___

  • Sogut MZ, Seçgin Ö, Ozkaynak S. Investigation of thermodynamics performance of alternative jet fuels based on decreasing threat of paraffinic and sulfur. Energy 2019;181:1114–20. https://doi.org/10.1016/j.energy.2019.05.136.
  • International Civil Aviation Organization. Assembly resolutions in force: (as of 8 October 2010). Montreal: International Civil Aviation Organization; 2011.
  • Kharina A, Rutherford D. Fuel efficiency trends for new commercial jet aircraft: 1960 to 2014. Int Counc Clean Transp 2015. n.d.
  • Balli O. Exergetic, Exergoeconomic, Sustainability and Environmental Damage Cost Analyses of J85 Turbojet Engine with Afterburner. International Journal of Turbo & Jet-Engines 2020;37:167–94. https://doi.org/10.1515/tjj-2017-0019. 5. Balli O, Hepbasli A. Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine. Energy 2014;64:582–600. https://doi.org/10.1016/j.energy.2013.09.066.
  • Rosen MA, Etele J. Aerospace systems and exergy analysis: applications and methodology development needs. IJEX 2004;1:411. https://doi.org/10.1504/IJEX.2004.005786.
  • Pavelka M, Klika V, Vágner P, Maršík F. Generalization of exergy analysis. Applied Energy 2015;137:158–72. https://doi.org/10.1016/j.apenergy.2014.09.071.
  • Pellegrini LF, Gandolfi R, Silva G, de Oliveira Jr. S. Exergy Analysis as a Tool to Decision Making in Aircraft Design. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada: American Institute of Aeronautics and Astronautics; 2007. https://doi.org/10.2514/6.2007-1396.
  • Zhang J, Wang Z, Li Q. Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode. Acta Astronautica 2017;138:394–406. https://doi.org/10.1016/j.actaastro.2017.06.011.
  • Dong Z, Li D, Wang Z, Sun M. A review on exergy analysis of aerospace power systems. Acta Astronautica 2018;152:486–95. https://doi.org/10.1016/j.actaastro.2018.09.003.
  • El-Sayed AF. Aircraft propulsion and gas turbine engines. Boca Raton: CRC Press; 2008.
  • Saravanamuttoo HIH, Rogers GFC, Cohen H. Gas turbine theory. 5th ed. Harlow, England ; New York: Prentice Hall; 2001.
  • Turan Ö, Aydın H. Numerical calculation of energy and exergy flows of a turboshaft engine for power generation and helicopter applications. Energy 2016;115:914–23. https://doi.org/10.1016/j.energy.2016.09.070.
  • Team E. The 5 Main Types of Aircraft Jet Engines. Aero Corner 2019. https://aerocorner.com/blog/types-of-aircraft-engines/ (accessed February 2, 2021).
  • Saraçyakupoğlu T. Bir Gaz Türbin Motoru Kompresör PalesininTi6Al4V Alaşımından Eklemeli Üretim Yöntemi ile İmalatı ve Boyutsal Doğrulaması. Mühendis ve Makina 2021. https://doi.org/10.46399/muhendismakina.865357.
  • Team E. 7 Different Types of Helicopter Engines. Aero Corner 2020. https://aerocorner.com/blog/types-of-helicopter-engines/ (accessed February 2, 2021).
  • Yildirim E, Altuntas O, Karakoc TH, Mahir N. Sustainability Assessment in Piston-Prop Helicopter Engine. In: Karakoc TH, Ozerdem MB, Sogut MZ, Colpan CO, Altuntas O, Açıkkalp E, editors. Sustainable Aviation, Cham: Springer International Publishing; 2016, p. 115–23. https://doi.org/10.1007/978-3-319-34181-1_11.
  • Altuntas O, Karakoc TH, Hepbasli A. Exergoenvironmental analysis of piston-prop aircrafts. IJEX 2012;10:290. https://doi.org/10.1504/IJEX.2012.046816.
  • Altuntas O, Karakoc TH, Hepbasli A. Exergoeconomic Environmental Optimization of Piston-Prop Aircraft Engines. International Journal of Green Energy 2015;12:41–50. https://doi.org/10.1080/15435075.2014.889009.
  • Koruyucu E. Hibrit (piston prop-elektrik) tahrikli hafif genel maksat helikopterin enerji ve çevresel etkilerinin matematiksel incelenmesi. Yayımlanmamış Doktora Tezi. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ, 2018.
  • Yildirim E, Altuntas O, Mahir N, Karakoc TH. Energy, exergy analysis, and sustainability assessment of different engine powers for helicopter engines. International Journal of Green Energy 2017;14:1093–9. https://doi.org/10.1080/15435075.2017.1358626.
  • Çengel YA, Boles MA. Thermodynamics: an engineering approach. Eighth edition. New York: McGraw-Hill Education; 2015.
  • Theo Rindlisbacher, Lucien Chabbey. Guidance on the determination of helicopter emissions. Federal office of civil aviation (FOCA). Edition 2, Dec. 2015 reference: COO.2207.111.2.2015750” 2015.
  • Topal A, Turan O. Thermo-Efficiencies of a Tubular Combustor Under Different Inlet Conditions. International Journal of Turbo & Jet-Engines 2021;38:185–92. https://doi.org/10.1515/tjj-2018-0005.
  • SAE International. Procedure for the Analysis and Evaluation of Gaseous Emissions from Aircraft Engines. SAE International Gaseous Committee- E-31G; n.d. https://doi.org/10.4271/ARP1533C.
  • Altuntas O, Karakoc TH, Hepbasli A. Exergetic, exergoeconomic and sustainability assessments of piston-prop aircraft engines. J Therm Sci Technol 2012;32:133–43.
  • Akdeniz HY, Balli O. Effects of Bypass Ratio Change Trend on Performance in a Military Aircraft Turbofan Engine With Comparative Assessment. Journal of Energy Resources Technology 2021;143:120905. https://doi.org/10.1115/1.4051297.
  • Akdeniz HY, Balli O. Energetic and exergetic assessment of operating biofuel, hydrogen and conventional JP-8 in a J69 type of aircraft turbojet engine. J Therm Anal Calorim 2021. https://doi.org/10.1007/s10973-021-10879-z.
  • Akdeniz HY, Balli O. Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft. Energy 2021:121745. https://doi.org/10.1016/j.energy.2021.121745.
  • Caliskan H, Tat ME, Hepbasli A. Performance assessment of an internal combustion engine at varying dead (reference) state temperatures. Applied Thermal Engineering 2009;29:3431–6. https://doi.org/10.1016/j.applthermaleng.2009.05.021.
  • Caliskan H. Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors. Renewable and Sustainable Energy Reviews 2017;69:488–92. https://doi.org/10.1016/j.rser.2016.11.203.
  • Caliskan H. Güneş Kollektörlerinin Enerji, Ekserji, Termoekolojik, Sürdürülebilirlik, Termoekonomik Ve Eksergoekonomik Analizleri. Mühendis ve Makina 2020;61:228–40. https://doi.org/DOI : 10.46399/muhendismakina.774277.
  • Dinçer İ, Rosen MA. Exergy energy, environment, and sustainable development. Amsterdam; Boston: Elsevier; 2007.
  • Lycoming Part No. O9867 Overhauled HIO-360-D1A - Lycoming Engines - Air Power, Inc. n.d. http://www.airpowerinc.com/productcart/pc/TLEngineDetail.asp?catID=33&prodID=10264 (accessed February 2, 2021).
  • Ust Y, Sahin B, Kodal A, Akcay IH. Ecological coefficient of performance analysis and optimization of an irreversible regenerative-Brayton heat engine. Applied Energy 2006;83:558–72. https://doi.org/10.1016/j.apenergy.2005.05.009
Mühendis ve Makina-Cover
  • ISSN: 1300-3402
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1957
  • Yayıncı: TMMOB MAKİNA MÜHENDİSLERİ ODASI