Rüzgâr Türbinlerinde Kullanılan Farklı Kanat Profillerinin Sayısal Olarak İncelenmesi

Rüzgâr türbinlerinden elde edilen enerji miktarı her geçen gün artmaktadır. Rüzgâr türbinlerinin güç çıkışlarını etkileyen faktörlerden birisi de kanat profilleridir. Bu çalışmada rüzgâr türbinlerinde kullanılan farklı (NACA 0009, NACA 2415, NACA 4415, NACA 4424, NACA 6412, NACA 6415, NACA 24112, FX 63-137, GOE 795, NREL’s S824, SD 5060, SG6040) kanat profillerinin Qblade yazılımı kullanılarak simülasyonları oluşturulup sayısal analizleri yapılmış ve aerodinamik performansları incelenmiştir. Sayısal analizler 0°- 20° arası hücum açılarında ve 5x104, 2x105 1x106 Reynolds sayılarında gerçekleştirilmiştir. En yüksek aerodinamik verimliliğe sahip kanat profilleri NACA 6412, NACA 6415 ve NACA 4415 olarak belirlenmiş ve bu kanat profillerinden üç kanatlı rüzgâr türbini oluşturulup elde edilen güç çıkışları ve performans değerleri bulunmuştur. Bu kanat profilleri için uç-hız oranı 6.5 ila 7.8 aralığında maksimum verim alınmıştır. Sonuç olarak rüzgâr türbinlerinde NACA 6412, NACA 6415 ve NACA 4415 kanat profilleri kullanılarak türbinden alınacak verim maksimum seviyede olacaktır. Bu çalışmada, literatürde mevcut olmayan AG37, AH 80-140 NACA 8824 ve RG-12 kanat profilleri literatüre katkı sağlamak amacıyla analiz edilmiştir.

Numerical Investigation of Different Blade Profiles Used in Wind Turbines

The amount of energy obtained from wind turbines is increasing day by day. One of the factors affecting the power output of wind turbines is blade profiles. In this study, simulations of different blade profiles (NACA 0009, NACA 2415, NACA 4415, NACA 4424, NACA 6412, NACA 6415, NACA 24112, FX 63-137, GOE 795, NREL’s S824, SD 5060, SG6040) using Qblade software created, numerically analyzed and their aerodynamic performances were examined. Numerical analyzes were performed at angle of attack between 0°and 20° and Reynolds numbers of 5x104, 2x105, 1x106. Blade profiles with the highest aerodynamic efficiency were determined as NACA 6412, NACA 6415 and NACA 4415, and the power outputs and performance values obtained by creating a three-bladed wind turbine from these blade profiles were found. Maximum efficiency was obtained for these blade profiles in the tip-speed ratio range of 6.5 to 7.8. As a result, the efficiency to be obtained from the turbine will be at the optimum level by using NACA 6412, NACA 6415 and NACA 4415 blade profiles in wind turbines. In this study, AG37, AH 80-140, NACA 8824 and RG-12 blade profiles, which are not available in the literature, were analyzed in order to contribute to the literature.

___

  • Chehouri, A., Younes, R., Ilinca, A., & Perron, J. (2015). Review of performance optimization techniques applied to wind turbines. Applied Energy, 142, 361-388.
  • Kadir, K. A. Y. A., & Erdem, K. O. Ç. (2015). Yatay Eksenli Rüzgâr Türbinlerinde Kanat Profil Tasarımı Ve Üretim Esasları. Mühendis Ve Makina, 56(670), 38-48.
  • Körpe, S., & Darak, H. (2017). Düz Uçuş için Kanat Profili Eniyilemesi. Journal of Aviation, 1(2), 107-119.
  • Alaskari, M., Abdullah, O., & Majeed, M. H. (2019, May). Analysis of wind turbine using QBlade software. In IOP conference series: materials science and engineering (Vol. 518, No. 3, p. 032020). IOP Publishing.
  • Koç, E., Gunel, O., & Yavuz, T. (2016). Mini-Scaled Horizontal Axis Wind Turbine Analysis By Qblade And Cfd. International Journal Of Energy Applications And Technologies, 3(2), 87-92.
  • Görgülü, Y. F., Özgür, M. A., & Ramazan, K. Ö. S. E. (2021). CFD Analysis of a Naca 0009 Aerofoil at a Low Reynolds Number. Politeknik Dergisi, 1-1.
  • Şahin, İ., & Acir, A. (2015). Numerical and experimental investigations of lift and drag performances of NACA 0015 wind turbine airfoil. International Journal of Materials, Mechanics and Manufacturing, 3(1), 22-25.
  • Tanürün, H. E., İsmail, A. T. A., Canlı, M. E., & Adem, A. C. I. R. (2020). Farklı açıklık oranlarındaki NACA-0018 rüzgâr türbini kanat modeli performansının sayısal ve deneysel incelenmesi. Politeknik Dergisi.
  • Singh, B., & Gill, H. S. (2020). Wind turbine blade design for low rotational inertia materials at variable speeds with different twisting angle using Q-Blade. Materials Today: Proceedings, 33, 1666-1670.
  • Husaru, D. E., Bârsănescu, P. D., & Zahariea, D. (2019, September). Effect of yaw angle on the global performances of Horizontal Axis Wind Turbine-QBlade simulation. In IOP Conference Series: Materials Science and Engineering (Vol. 595, No. 1, p. 012047). IOP Publishing.
  • Raut, S., Shrivas, S., Sanas, R., Sinnarkar, N., & Chaudhary, M. K. (2017). Simulation of micro wind turbine blade in Q-blade. International Journal for Research in Applied Science & Engineering Technology, 5, 256-262.
  • Handoyono, N. A., & Wardhana, A. G. S. (2019). Comparison Of Hint Wind Tines Of Airfoil Type NACA 4412, NACA 23012, and NACA 16-212 Using Qblade Software. Vanos Journal of Mechanical Engineering Education, 4(1).
  • Muftah, A. (2019). CFD Modeling of Airfoil of wind turbine under different effect of operating conditions. SUSJ Journal, Sirte University, 9(1), 27-43.
  • Shabur, A., Hasan, A., & Ali, M. (2020). Comparison of Aerodynamic Behaviour between NACA 0018 and NACA 0012 Airfoils at Low Reynolds Number Through CFD Analysis. Advancement in Mechanical Engineering and Technology, 3(2).
  • Zahari, M. F. (2013). A Study of Drag Force on Different Type of Airfoil in a Subsonic Wind Tunnel (Doctoral dissertation, UMP).
  • García, V., Vargas, L., Acuña, A., Sosa, J. B., Durazo, E., Ballesteros, R., & Ocampo, J. (2019). Evaluation of basalt fibers on wind turbine blades through finite element analysis. Advances in Materials Science and Engineering, 2019.
  • Hasan, D. Ü. Z. (2016). Rüzgâr Türbinleri için Farklı Kanat Profillerinin Sayısal Olarak Test Edilmesi. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, 4(2).
  • Wang, Q., Chen, J., Pang, X., Li, S., & Guo, X. (2013). A new direct design method for the medium thickness wind turbine airfoil. Journal of Fluids and Structures, 43, 287-301.
  • Selig, M. S., & McGranahan, B. D. (2004). Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines. J. Sol. Energy Eng., 126(4), 986-1001.
  • Kale, S. A., Birajdar, M. R., & Sapali, S. N. (2016). Numerical Analysis of New Airfoils for Small Wind Turbine Blade. J Altern Energy Sources Technol, 6(1), 1-6.
  • Nachtane, M., Tarfaoui, M., Saifaoui, D., & Rouway, M. (2020). Hydrodynamic performance evaluation of a new hydrofoil design for marine current turbines. Materials Today: Proceedings, 30, 889-898.
  • Mahmuddin, F. (2017). Rotor blade performance analysis with blade element momentum theory. Energy Procedia, 105, 1123-1129.
  • Singh, R. K., Ahmed, M. R., Zullah, M. A., & Lee, Y. H. (2012). Design of a low Reynolds number airfoil for small horizontal axis wind turbines. Renewable energy, 42, 66-76.
  • Balzan, M., Abdollahi, A., Wells, F. S., & Willmott, G. R. (2021). Drop Impact of Non-Newtonian Dairy-Based Solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 126895.
  • Emniyetli, G. 2007. Evsel elektrik ihtiyacının karşılanması için Rüzgâr türbini tasarımı, Yüksek Lisans Tezi, Trakya Üniversitesi, Fen Bilimleri Enstitüsü, 134 sayfa, Çorlu.
  • Şenel, M. C., & Erdem, K. O. Ç. (2014). Kanat Tasarim Parametrelerinin Rüzgâr Türbini Aerodinamik Performansına Etkisi. V. Ulusal Havacilik ve Uzay Konferansi, 8-10.
  • Marten, D., & Wendler, J. (2013). Qblade guidelines. Ver. 0.6, Technical University of (TU Berlin), Berlin, Germany.
  • Nath, R., & Bhattacharjee, S. (2018). Computational Intelligence for Numerical Analysis of Wind Energy Conversion System. International Journal of Computational Intelligence & IoT, 1(1).
  • Moriarty, P. J., & Hansen, A. C. (2005). AeroDyn theory manual (No. NREL/TP-500-36881). National Renewable Energy Lab., Golden, CO (US).
  • Winslow, J., Otsuka, H., Govindarajan, B., & Chopra, I. (2018). Basic understanding of airfoil characteristics at low Reynolds numbers (10 4–10 5). Journal of Aircraft, 55(3), 1050-1061.
  • Rodríguez, M. C., & Morales, M. C. (2014). Morphology development of an airfoil by numerical analysis.
  • Hadi, M. I., Nazri, M., & Abdullah, A. (2006). Vortex formation in unsteady flow over NACA 4412 and NACA 4424 airfoils. ARPN J. Eng. Appl. Sci, 15, 27-33.
  • Zaheer, Z., Roy, K. R., Nair, G. S., Ragipathi, V., & Niranjan, U. V. (2019, November). CFD analysis of the performance of different airfoils in ground effect. In Journal of Physics: Conference Series (Vol. 1355, No. 1, p. 012006). IOP Publishing.
  • Ali, R., Akhtar, S., Farhan, M., & Alam, F. (2021). Numerical investigation of aerodynamic parameters across NaCa6415 airfoil. Materials Today: Proceedings.
  • Gunel, O., Koç, E., & Yavuz, T. (2016). Comparison of CFD and Xfoil airfoil analyses for low Reynolds number. International Journal of Energy Applications and Technologies, 3(2), 83-86.
  • Atılgan, M., Altan, B. D., & Atlıhan, A. B. Rüzgâr Türbini Uygulamaları.
Mühendis ve Makina-Cover
  • ISSN: 1300-3402
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1957
  • Yayıncı: TMMOB MAKİNA MÜHENDİSLERİ ODASI