Crashworthiness Performance of Al6061 Tubes with Stiffened Quatrefoil Sections under Axial and Oblique Impact Conditions

This study presents the crashworthiness performance of Al6061 tubes with stiffened quatrefoil sections under axial and oblique impact conditions. Influences of different types of stiffeners through the depth of tubes in the design of a quatrefoil sectional crash absorber structure are investigated, numerically. Four types of stiffener patterns are considered under oblique impact angles of 0º, 10º, 20º, and 30º measured from the horizontal axis. Force-displacement characteristics, deformation patterns, and crashworthiness indexes of the tested tubes are given to decide optimal crash absorber configuration. The numerical tube models are placed between two rigid plates and an axial impact speed of 1m/s is considered in the numerical study. Al6061 series aluminum alloy is used as a tube material with a multi-linear material model assuming strain-rate independent properties. It is found that the crashworthiness performance is very sensitive to impact angle and Q-S-4 type stiffeners can be proposed for a better tube design.

Güçlendirilmiş Dört Folyo Kesitli Al6061 Tüplerinin Eksenel ve Eğik Darbe Koşulları Altında Çarpışma Dayanıklılık Performansı

Bu çalışmada, güçlendirilmiş dört-yaprak kesitlere sahip Al6061 boruların eksenel ve eğik darbe koşulları altında çarpışma dayanımı performansı sunulmaktadır. Dört-yaprak kesitli bir darbe sönümleyici yapının tasarımında boru derinliği boyunca farklı tipte desteklerin etkileri sayısal olarak incelenmiştir. Yatay eksenden ölçülen 0º, 10º, 20º ve 30º eğik darbe açıları altında, dört farklı tipte destek geometrisi incelenmiştir. Test edilen modellerin kuvvet-yer değiştirme karakteristikleri, deformasyon şekilleri ve darbe dayanıklılık indeksleri optimum darbe sönümleyici konfigürasyonunu belirlemek için kullanılmıştır. Sayısal modeller, iki rijit plaka arasına yerleştirilmiş ve sayısal çalışmada 1m/s’lik bir eksenel çarpma hızı dikkate alınmıştır. Al6061 serisi alüminyum alaşımı, gerinim oranından bağımsız malzeme özellikleri varsayılarak, çoklu-doğrusal malzeme modeli dikkate alınarak boru malzemesi olarak kullanılmıştır. Darbe dayanımı performansının çarpma açısına çok duyarlı olduğu ve daha iyi bir boru tasarımı için Q-S-4 tipi desteklerin önerilebileceği sonucuna varılmıştır.

___

  • Ying, L., Dai, M., Zhang, S., Ma, H., and Hu, P. 2016. “Multiobjective crashworthiness optimization of thin-walled structures with functionally graded strength under oblique impact loading”. Thin-Walled Structures, vol. 117, pp. 165–177.
  • Alkhatib, S.E., Tarlochan, F., and Eyvazian, A. 2017. “Collapse behavior of thin-walled corrugated tapered tubes”. Engineering Structures, vol. 150, pp. 674–692.
  • Fan, Z., Lu, G., Liu, K. 2013. “Quasi-Static Axial compression of thin-walled tubes with different cross-sectional shapes”. Engineering Structures, vol. 55, pp. 80–91.
  • Tarlochan, F., Samer, F., Hamouda, A.M.S., Ramesh, S., Khalid, K. 2013. “Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces”. Thin-Walled Structures, vol. 71, pp. 7–17.
  • Liu, M., Zhang, L., Wang, P., Chang, Y. 2015. “Buckling behaviors of section aluminum alloy columns under axial compression”. Engineering Structures, vol. 95, pp. 127–137.
  • Li, Z., Ma, W., Yao, S., Xu, P. 2021. “Crashworthiness performance of corrugation- reinforced multicell tubular structures”. International Journal of Mechanical Sciences, vol. 190, pp. 106038.
  • Ma, W., Xie, S., and Li Z. 2019. “Mechanical performance of bio-inspired corrugated tubes with varying vertex configurations”. Int. J. Mech. Sci., vol. 172, pp. 105399.
  • Zhang, L., Bai, Z., and Bai F. 2018. “Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections”. Thin-Walled Structures, vol. 122, pp. 42–51.
  • Xiang, X.M., Lu, G., and You, Z. 2020. “Energy absorption of origami inspired structures and materials”. Thin-Walled Structures, vol. 157, pp. 107130.
  • Ha, N.S., Lu, G. 2020. “A review of recent research on bio-inspired structures and materials for energy absorption applications”. Composites Part B: Engineering, vol. 181, pp. 107496.
  • Li, J., Zhang, Y., Kang, Y., Zhang, F. 2021. “Characterization of energy absorption for side hierarchical structures under axial and oblique loading conditions”. Thin-Walled Structures, vol. 165, pp. 107999.
  • Tran, T.N. 2020. “Study on the crashworthiness of windowed multi-cell square tubes under axial and oblique impact”. Thin-Walled Structures, vol. 155, pp. 106907.
  • Patel, S., Vusa, V.R., Guedes Soares C. 2019. “Crashworthiness analysis of polymer composites under axial and oblique impact loading”. Int. J. Mech. Sci., vol. 156, pp. 221–234.
  • Albak, E.İ. 2021. “Crashworthiness design for multi-cell circumferentially corrugated thin-walled tubes with sub-sections under multiple loading conditions”. Thin-Walled Structures, vol. 164, pp. 107886.
  • Tarlochan, F., Samer, F., Hamouda, A.M.S., Ramesh, S., and Khalid, K. 2013. “Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces”. Thin-Walled Structures, vol. 71, pp. 7–17.
  • Lu, G. and Yu, T.X. 2003. “Energy absorption of structures and materials”. Elsevier.
  • Guillow, S.R., Lu, G., Grzebieta R.H. 2001. “Quasi-static axial compression of thin-walled circular aluminium tubes”. Int. J. Mech. Sci., vol. 43(9), pp. 2103–2123.
  • Tang, Z., Liu, S., Zhang, Z. 2013. “Analysis of energy absorption characteristics of cylindrical multi-cell columns”. Thin-Walled Struct., vol. 62, pp. 75–84.
  • Baroutaji, A., Morris, E., Olabi, A.G. 2014.“Quasi-static response and multi-objective crashworthiness optimization of oblong tube under lateral loading”. Thin-Walled Struct., vol. 82, pp. 262–277.
  • Nia, A.A., Parsapour, M. 2014. “Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections”, Thin-Walled Struct., vol. 74, pp. 155–165.
  • Pirmohammad, S., Marzdashti, S.E. 2016. “Crushing behavior of new designed multi-cell members subjected to axial and oblique quasi-static loads”. Thin-Walled Struct., vol. 108, pp. 291–304.
  • Abramowicz, W., Wierzbicki, T. 1989. “Axial crushing of multicorner sheet metal columns”. J. Appl. Mech., vol. 56, pp. 113–120.
  • Nia, A.A., Hamedani, J.H. 2010. “Comparative analysis of energy absorption and de- formations of thin walled tubes with various section geometries”. Thin-Walled Struct., vol. 48, pp. 946–954.
  • Tarlochan, F., Samer, F., A.M.S. Hamouda, A.M.S. 2013. “Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces”. Thin-Walled Struct., vol. 71, pp. 7–17.
  • Liu W. 2016. “Dynamic performances of thin-walled tubes with star-shaped cross section under axial impact”. Thin-Walled Struct., vol. 100, pp. 25–37.
  • Abbasi, M. 2015. “Multiobjective crashworthiness optimization of multi-cornered thin-walled sheet metal members”. Thin-Walled Struct., vol. 89, pp. 31–41.
  • Fan, Z., Lu, G., Liu, K. 2013. “Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes”. Eng. Struct., vol. 55, pp. 80–89.
  • Kocabaş İ., Yılmaz H. 2021. “A Numerical Investigation on Crashworthiness Performance of Thin-Walled Tubular Sections”, 7. ULUSLARARASI MUHENDİSLİK MİMARLIK VE TASARIM KONGRESİ, 21-22 Mayıs 2021.
  • Li, Z., Ma, W., Yao, S., and Xu, P. 2020. “Crashworthiness performance of corrugation-reinforced multicell tubular structures”. Int. J. Mech. Sci., vol. 190, pp. 106038.
Mühendis ve Makina-Cover
  • ISSN: 1300-3402
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1957
  • Yayıncı: TMMOB MAKİNA MÜHENDİSLERİ ODASI