Mikrokanallarda tek-fazlı akışkan akışı ve ısı geçişi

Son yıllarda mlkrokanallardaki tek-fazlı akışın akış-dinamikleri ve ısı geçişi karakteristikleri üzerine çok sayıda deneysel analiz yapılmıştır. Mlkrokanallardaki deneysel sonuçlar üzerine son yıllarda literatürde çeşitli çalışmalar yapılmıştır. Bu çalışmalar, bazen klasik bağıntılarla uyuşması bazen de onlarla ters düşmesi, nedeniyle sonuçların tek anlamlılıktan ne kadar uzak olduğunu açıkça göstermektedir. Bu makalede esas olarak bu sapmaların nedeni analiz edilecek ve tartışılacaktır. Bu deneysel çalışmaların kronolojik analizinden, mikrokanallardan elde edilen deneysel veri ile geleneksel teorinin öngörüleri arasındaki farklılığın azaldığını görmek mümkündür. Bu gerçek, mikrokanalın pürüzlülüğü ve geometrisinin daha iyi kontrolünün sonucu olan mikro üretim tekniklerindeki büyük gelişme ve yapılan deneysel testlerin doğruluğundakl artışla kısmen açıklanabilir. Bu nedenle, daha önce yapılan çalışmaların sonuçları bazen hatalarla dolu ve yanıltıcı olabilmektedir. Bu çalışmada, mlkrokanaliardaki tek-fazlı akışların ısı taşnımı ve basınç düşüşü üzerindeki ana ölçek ve mlkro-etkilerinin rolünün, klasik teoriyle kanıtlanabilen, literatürde yayınlanan pek çok deneysel sonuçla açıklanması hedeflenmektedir. Yazarlar, klasik akışkanlar dinamiği ve ısı geçişi kanunları hakkında İyi bilgiye sahip olmanın genelde pek çok şaşırtıcı ve beklenmeyen sonucun anlaşılması için yeterli olacağını düşünmektedir.

Single-phase fluid flow and heat transfer in microchannels

In the last years a large amount of experimental analyses have been addressed to the study of the fluid-dynamical and heat transfer characteristics of single-phase flows in microchannels: Reviews of experimental results, for mlcrochannels have appeared In the last years in the open literature, These reviews show clearly how the results are far from univocal, sometimes agreeing with the classical correlations, at other times contradicting them. In this paper the main aspects:which can be, responsible for these deviations will be analysed , and discussed. From a chronological analysis: of these experimental works it is possible, to note that the discrepancy between the experimental data obtained for microchannels and the predictions of the conventional theory is decreasing. This fact can be partially, explained by considering the, dramatic improvements in microfabrication techniques with the consequent more appropriate control,of the roughness and geometry of the microchannel and with the increase in the accuracy of the experimental tests made. For this reason the results of the older studies are sometimes fraught with errors and can be misleading. In this work the role played by the main scaling effects and micro-effects on the pressure drop and on the convective heat transfer for single-phase flows in microchannels will be analysed with the aim to explain that many experimental results published In the open literature can be justified by using the conventional theory. It Is opinion of the writers that a good knowledge of the classical laws of fluid-dynamics and heat transfer are in general: sufficient to understand a large amount of apparently baffling and unexpected results.

___

  • Wu, P., Little, W. A., Measurement of Friction Factors For The Flow of Gases in Very Fine Channels Used For Microminiature Joule-Thompson Refrigerators, Cryogenics 23,273-277,1983.
  • Poiseuille, J.M., Recherches Experimental Sur le Mouvement Des Liquides Dans Les Tubes de Tres Petits Diametres, Comptes Rendus Hebdomadaires de I'Academie des Sciences, vol. 11, p. 961-967 and p. 1041-1048,1840.
  • Bouasse, H., Jets, Tubes et Canaux, Librairie Delagrave, Paris, 1923.
  • Herwig, H., Hausner, O., Critical View On "New Results in Micro-Fluid Mechanics": an Example, Int. J. Heat Mass Transfer, vol. 46, pp.935-937,2003.
  • Kandlikar,S.G., Garimella,S.V.,Li,D.,Colin,S.,and King,M., Heat Transfer and Fluid Flow in Minichannels and Microchannels: Elsevier, 2005: Chap. 2.
  • Cercignani, C, Daneri, A., Flow of a Rarefied Gas Between Two Parallel Plates, J. Applied Physics, 34, 3509-3513,1963.
  • Pong, K.-C, Ho, C.-M., Liu, J., and Tai, Y.-C, Non-Linear Pressure Distribution in Uniform Microchannels, in Application of Microfabrication to Fluid Mechanics, vol. FED-197, ASME Winter Annual Meeting, Chicago, 51 -56,1994.
  • Shin, J. C., Ho, C.-M., Liu, J., and Tai, Y.-C., Monatomic and polyatomic Gas Flow Through Uniform Microchannels, DSC-59 ASME, 197-203,1996.
  • Arkilic, E. B., Breuer, K. S., and Schmidt, M. A., Mass Flow and Tangential Momentum Accommodation in Silicon Micromachined Channels, J. Fluid Mech., 437, 29-43, 2001.
  • Zohar, Y., Lee, S. Y. K., Lee, Y. L., Jiang, L., and Tong, P., Subsonic Gas Flow in a Straight and Uniform MicroChannel, j. Fluid mech., 472,125-151,2002.
  • Maurer, J., Tabeling, P., Joseph, P., and Willaime, H., Second-Order Slip Laws in Microchannels For Helium And Nitrogen, Phys. Fluids, 15,2613-2621,2003.
  • Colin, S., Lalonde, P., and Caen, R., Validation of a Second-Order Slip Flow Model in Rectangular Microchannels, Heat Transfer Eng., 25,23-30,2004.
  • Morini, G.L., Spiga, M., Tartarini, P., Rarefaction Effects on Friction Factor of Gas Flow in Microchannels, Superlattices & Microstructures, 35,587-599,2004.
  • Morini, G.L., Lorenzini, M., Spiga, M., A Criterion for the Experimental Validation of the Slip-Flow Models for Incompressible Rarefied Gases Through Microchannels, Microfluidicsand Nanofluidics, 2,190-196,2005.
  • Schamberg, R., The Fundamental Differential Equations And The Boundary Conditions For High Speed Slip-Flow and Their Applications to Several Specific Problems, PhD Thesis, California Institute of Technology, 1974.
  • Deissler, R.G., An Analysis of Second-Order Slip Flow And Temperature-Jump Boundary Conditions for rerefied gases, Int. J. Heat Mass Transfer, 7,681-694,1964.
  • Hsia, Y.T., Domoto, G.A., An Experimental investigation of Molecular Rarefaction Effects in gas Lubrificated Bearings at Ultra-Low Clearances, Trans. ASME J. Unification Tech., 105,120-130,1983.
  • Lockerby, D.A., Reese, J.M., Emerson, D.R., Barber, R.W., Velocity Boundary Condition at Solid Walls in Rarefied Gas Calculations, Phy. Rev. E, 70, 017303, 2004."
  • Barber, R.W., Emerson, D.R., Challenges in Modeling Gas-Phase Flow in Microchannels: From Slip to Transition, Proc. 3rd Int. Conf. on Micro & Minichannels ASME, paper n°75074, Toronto, 2005.
  • Karniadakis, G.E., Beskok, A., Microflows: Fundamentals and simulations. Springer, 2002.
  • Barron, R.F., Wang, X., Ameel, T., Warrington, R.O., The Graetz Problem Extended to Slip-Flow, Int. J, Heat Mass Transfer, 40,1817-1823,1997
  • Larrode, F.E., Housiadas, C., Drossinos, Y., Slip-flow Heat Transfer in Circular Tubes, Int. J. Heat Mass Transfer, 43, 2669-2680, 2000.
  • Yu, S., Ameel, T., Slip-Flow Heat Transfer in Rectangular Microchannels, Int. J. Heat Mass Transfer, 44,4225-4234, 2001.
  • Yu, S., Ameel, T., Slip-Flow Convection in isoflux Rectangular Microchannels, Trans. ASME J. Heat Transfer, 124,346-355,2002.
  • Hadjiconstantiou, N.G., Simek, O., Constant-Wall- Temperature Nusselt Number in Micro and Nano- Channels, Trans. ASME J. Heat Transfer, 124, 356-365, 2002.
  • Tunc,G., Bayazitoglu, Y., Heat Transfer in Microtubes With Viscous Dissipation, Int. J. Heat Mass Transfer, 44, 2395-2403,2001.
  • Ghodoossi, L., Cetegen, E., Prediction of Heat Transfer Characteristics in Rectangular Microchannels for Slip Flow Regime and H 1 Boundary Condition, Int. J. Thermal Sciences, 44,513-520,2005.
  • Mala, G.M., Li, D., Dale, J.D., Heat Transfer and Fluid Flow in Microchannels, Int. J. Heat and Mass Transfer, 40, 3079-3088,1997.
  • Mala, G.M., Li, D., Werner, C., Jacobasch, H.J., Ning, Y.B., Flow Characteristics of Water Through a MicroChannel between Two Parallel Plates with Electrokinetic Effects, Int. J. Heat and Fluid Flow, 18,489- 496,1997.
  • Yang, C., Li, D., Analysis of Electrokinetic Effects on the Liquid Flow in Rectangular Microchannels, Colloids and Surfaces A, 143,339-353,1998.
  • Yang, C., Li, D., Masliyah, J.H., Modeling Forced Liquid Convection in Rectangular MicroChannel With Electrokinetic Effects, Int. J. Heat and Mass Transfer, 41, 4229-4249,1998.
  • Li, D., Electro-viscous Effects on Pressure-Driven Liquid Flow in Microchannels, Colloids and Surfaces A, 195,35-57,2001.
  • Ren, C.L., Qu, W., Li, D., Interfacial Electrokinetic Effects on Liquid Flow in Microchannels, Int. J. Heat and Mass Transfer, 44,3125-3134,2001.
  • Pfalher, J., Harley, J., Bau, H.H., Zemel, J. N., Liquid transport in micron and submicron channels, Sensors and Actuators A, 21-23,431-434,1990.
  • Ren, C.L., Li, D., Electroviscous Effects on Pressure- Driven Flow of Diluite Electrolyte Solutions in Small Microchannels, J. Colloid and Interface Science, 274, 319-330,2004.
  • Santiago, J.G., Electroosmotic Flows in Microchannels with Finite Inertial and Pressure Forces, Analytical Chemistry, 73,2353-2365,2001.
  • Maynes, D., Webb, B.W., Fully Developed Electro- Osmotic Heat Transfer in Microchannels, Int. J. Heat Mass Transfer, 46,1359-1369,2003.
  • Maynes, D., Webb, B.W., Fully-Developed Thermal Transport in Combined Pressure and Electro-Osmotically Driven Flow in Microchannels, Trans. ASME J. Heat Transfer, 125,889-895,2003.
  • Tang, G.Y., Yang, C., Chai, J.C., Gong, H.Q., Joule Heating Effect on Electroosmotic Flow and Mass Transport in a Microcapillary, Int. J. Heat Mass Transfer, 47,215-227,2004.
  • Arulanandam, S., Li, D., Liquid Transport in Rectangular Microchannels by Electroosmotic Pumping, Colloids and Surfaces A, 161,89-102,2000.
  • Morini, G.L., Lorenzini, M., Salvigni, S., Spiga, M., Thermal Performance of Silicon Micro Heat-Sinks With Electrokinetically-Driven Flows, Proc. of 3th Int. Conf. on Micro & Minichannels, ASME, paper n°75239, Toronto, 2005.
  • Toh, K., Chen, X., Chai, J., Numerical Computation of Fluid Flow and Heat Transfer in Microchannels, Int. J. Heat Mass Transfer, 45,5133-5141,2002.
  • Fedorov, A.G., Viskanta, R., Three-Dimensional Conjugate Heat Transfer in the MicroChannel Heat Sink for Electronic Packaging, Int. J. Heat Mass Transfer, 43, 399-415,2000.
  • Qu, W., Mudawar, I., Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink, Int. J. Heat and Mass Transfer, 45,2549-2565,2002.
  • Lee, P.S., Garimella, S.V., Liu, D., Investigation of Heat Transfer Yn Rectangular Microchannels, Int. J. Heat Mass Transfer, 48,1688-1704,2005.
  • Morini, G.L., The Viscous Heating in Liquid Flows in Microchannels, Int. J. Heat and Mass Transfer, 48, 3637-3647,2005.
  • Judy, J., Maynes, D., Webb, B.W., Characterization of Frictional Pressure Drop for Liquid Flows through Microchannels, Int. J. Heat Mass Transfer, 45,3477-3489, 2002.
  • Celata, G.P., Morini, G.L., Marconi V., McPhail, S., Zummo G., Viscous Heating for the Determination of Friction Factor in Microchannels, Proc. ECI Int. Conf. on Heat Transfer and Fluid Flow in Microscale, vol. 1, Castelvecchio Pascoli, 2005.
  • Morini, G.L., The Viscous Dissipation as a Scaling Effect For Laminar Single-Phase Flows in Micro-Channels, Proc. of 3th Int. Conf. Micro&Minichannels ASME, paper n°75091, Toronto, 2005.
  • Cuta, J.M., McDonald, C.E., Shekarriz, A., Forced Convection Heat Transfer in Parallel Channel Array MicroChannel Heat Exchanger, ASME-PID, 2/HTD, 338, Advances in Energy Efficiency, Heat/Mass Transfer Enhancement, 1 7-23,1996.
  • Wu H.Y., Cheng, P., An Experimental Study of Convective Heat Transfer in Silicon Microchannels with Different Surface Conditions, Int. J. Heat Mass Transfer, 46, 2547-2556,2003.
  • Palm, B., Peng, X.F., Single-Phase Convective Heat Transfer, Chap. 2 in: Heat and Fluid Flow in Microchannels, G.R Celata Ed., Begell House NY, 2004.
  • Koo, J., Kleinstreuer, C., Viscous Dissipation Effects in Microtubes And Microchannels, Int. J. Heat Mass Transfer, 47,3159-3169,2004.
  • Tso, C.P., Mahulikar, S.P., The use of the Brinkman Number For Single Phase Forced Convective Heat Transfer in Microchannels, Int. J. Heat Mass Transfer, 41, 1759-1769,1998.
  • Tso, C.P., Mahulikar, S.R, Experimental Verification of the Role of Brinkman Number in Microchannels Using Local Parameters, Int. J. Heat Mass Transfer, 43, 1837-1849, 2000.
  • Maranzana, G., Perry, I., Maillet, D., Mini- and Micro- Channels influence of Axial Conduction in the Walls, Int. J. Heat Mass Transfer, 47,3993-4004,2004.
  • Hetsroni, G., Mosyak, A., Pogrebnyak, E., Yarin, L.P., Heat Transfer in Micro-Channels: Comparison of Experiments With Theory and Numerical Results, Int. J. Heat Mass Transfer, 48,5580-5601,2005.
  • Gamrat, G., Favre-Marinet, M., Asendrych, D., Conduction and Entrance Effects on Laminar Liquid Flow and Heat Transfer in Rectangular Microchannels, Int. J. Heat Mass Transfer, 48,2943-2954,2005.
  • Kandlikar S.G., Grande, W., Evolution of MicroChannel Flow Passages-Thermohydraulic Performance and Fabrication Technology, Heat Transfer Engineering, 24, 3-17,2003.
  • Hetsroni, G., Mosyak, A., Pogrebnyak, E., Yarin, L.P., Fluid Flow in Micro-channels, Int. J. Heat Mass Transfer, 48,1982-1998,2005.
  • Kandlikar, S.G., Joshi, S., Tian, S., Effect of Channel Roughness on Heat Transfer and Fluid Flow Characteristics at. Low Reynolds Numbers in Small Diameter Tubes, in: Proceedings of 35th National Heat Transfer Conference, Anaheim CA, USA, paper n°l 2134 2001.
  • Celata, G.P., Cumo, M.s Guglieimi, M., Zummo, G., Experimental Investigation of Hydraulic and Single Phase Heat Transfer in 0.130 mm Capillary Tube, Proc. of International Conference On Heat Transfer and Transport Phenomena in Microscale, Banff, 108-113,2000.
  • Sabry, M.N., Scale Effects on Fluid Flow and Heat Transfer in Microchannels, IEEE Trans. On Components and Packaging Technologies, 23,562-567,2000.
  • Croce, G., D'Agaro, P., Numerical Analysis of Roughness Effect on Microtube Heat Transfer, Superlattices and Microstructures 35,601-616,2004.
  • Koo J., Kleinstreuer, C., Analysis of surface roughness effects on heat transfer in micro-conduits, Int. J. Heat MassTransfer,48,2625-2634,2005.
  • Celata G.P., Cumo, M., McPhail, S.J., Tesfagabir, L., Zummo, G., Experimental Study on Compressibility Effects in Microtubes, Proc. XXIII UIT Italian National Conf. 53-60,2005.
  • Kohl M.J., Abdel-KhalikS .I., Jeter, S.M., Sadowski, D.L., An experimental Investigation of MicroChannel Flow with Internal Pressure Measurements, Int. J. Heat Mass Transfer, 48,1518-1533,2005.
  • Morini G.L., Lorenzini M., Salvigni S., Compressibility effects on friction factor for gas flows in microtubes, Proc. ECI Int. Conf. on Heat Transfer and Fluid Flow in Microscale, Castelvecchio Pascoli, 2005.
  • Asako, Y., Nakayama, K., Shimozuka, T., Effect of Compressibility on Gaseous Flows in a Micro-Tube, Int. J. Heat Mass Transfer, 48,4985-4994,2005.
  • Z.Y. Guo, Z.X. Li, Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale, Int. J. Heat Fluid Flow 24,284-298,2003.
  • Du, D., Effect of Compressibility and Roughness on Flow and Heat Transfer in Microtubes, PhD Thesis, Tsinghua University, 2000
  • Guo, Z.Y., Wu, X.B., Compressibility Effect on the Gas Flow and Heat Transfer in a Microtube, Int. J. Heat Mass Transfer, 40,3251-3254,1997.