Kare Kesitli Mikrokanallarda Doymuş Kaynamalı Akış Karakteristiklerinin Deneysel İncelenmesi

Bu çalışmada, her biri 200 µm x 200 µm kanal kesitine (genişlik x yükseklik) sahip yirmi dokuz paralel mikrokanaldan oluşan silikon ısı alıcıda, deiyonize suyun doymuş kaynamalı akış karakteristikleri deneysel olarak incelenmiştir. Üç farklı kütle akısında (51, 65 ve 78 kgm-2s-1) çalışılmış olup; duvar ısı akısı, 44,5 – 62,8 kWm-2 aralığında tutulmuştur. Bu kapsamda, ısı akısı ve kütle akısının iki faz ısı transfer katsayısı ve toplam basınç düşümü üzerindeki etkileri incelenmiştir. Fiziksel mekanizma, ölçümlerle eşzamanlı alınan yüksek hızlı akış görüntüleri yardımıyla irdelenmiştir. Çalışma sonucunda, iki faz ısı transfer katsayısının artan ısı akısı ve kuruluk derecesi ile azaldığı, artan kütle akısı ile arttığı; toplam basınç düşümünün ise, genel karakter olarak, artan ısı akısı ve çıkış kuruluk derecesi ile arttığı ve artan kütle akısı ile azaldığı belirlenmiştir. Ayrıca, akış görüntüleme çalışmalarında, mikrokanallarda kaynamalı akış olayının sanki-periyodik karakterde olduğu gözlemlenmiştir.
Anahtar Kelimeler:

Mikrokanal, kaynamalı akış

An Experimental Investigation of Saturated Flow Boiling Characteristics in Square Microchannels

In this study, saturated flow boiling characteristics of deionized water are experimentally investigated in silicon heat sink consisting of twenty nine parallel microchannels with cross sectional dimensions of 200 µm x 200 µm (width x height). Experiments are conducted for three different mass fluxes of 51, 65 and 78 kgm-2s-1, while the wall heat flux ranges from 44.5 – 62.8 kWm-2. In this context, the effects of heat flux and mass flux on the two phase heat transfer coefficient and the total pressure drop are investigated. The physical mechanism is scrutinized through simultaneous high speed flow images taken during measurements. Consequently, two phase heat transfer coefficient decreases with increasing heat flux and vapor quality, and increases with increasing mass flux. The total pressure drop increases with increasing heat flux and exit vapor quality while it decreases with increasing mass flux. From the flow visualization experiments, it is observed that flow boiling phenomenon in microchannels has quasi-periodical characteristics. 

___

  • Liu, D., Garimella, S.V. 2007. “Flow Boiling Heat Transfer in Microchannels,” Journal of Heat Transfer, vol. 129, p. 1321-1332.
  • Chen, T., Garimella, S.V. 2011. “Local Heat Transfer Distribution And Effect Of Instabilities During Flow Boiling In A Silicon Microchannel Heat Sink,” International Journal of Heat and Mass Transfer, vol. 54, no. 15-16, p. 3179–3190.
  • Wang, Y., Wang, Z.G. 2014. “An Overview of Liquid-Vapor Phase Change, Flow and Heat Transfer in Mini and Micro-Channels,” International Journal of Thermal Sciences, vol. 86, p. 227-245.
  • Deng, D., Wan, W., Tang, Y., Wan, Z., Liang, D. 2015. “Experimental Investigations on Flow Boiling Performance of Reentrant and Rectangular Microchannels – A Comparative Study,” International Journal of Heat and Mass Transfer, vol. 82, p. 435–446.
  • Tibiriçá, C.B., Czelusniak, L.E., Ribatski, G. 2015. “Critical Heat Flux in a 0.38 mm Microchannel and Actions for Suppression of Flow Boiling Instabilities,” Experimental Thermal and Fluid Science, vol. 67, p. 48-56.
  • Lee, P.S., Garimella, S.V. 2008.“Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays,” International Journal of Heat and Mass Transfer, vol. 51, no. 3−4, p. 789–806.
  • Huang, H., Thome, J.R. 2016. “Local Measurements and a New Flow Pattern Based Model for Subcooled and Saturated Flow Boiling Heat Transfer in Multi-Microchannel Evaporators,” International Journal of Heat and Mass Transfer, vol. 103, p. 701–714.
  • Qu, W., Mudawar, I. 2003. “Flow Boiling Heat Transfer in Two phase Micro-Channel Heat Sinks-I. Experimental Investigation and Assessment of Correlation Methods,” International Journal of Heat and Mass Transfer, vol. 46, no. 15, p. 2755–2771.
  • Steinke, M.E., Kandlikar, S.G. 2004. “An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels,” Journal of Heat Transfer, vol. 126, p. 518–526.
  • Huh, C., Kim, M.H. 2007. “Pressure Drop, Boiling Heat Transfer and Flow Patterns During Flow Boiling in a Single Microchannel,” Heat Transfer Engineering, vol. 28, no. 8–9, p. 730–737.
  • Saraceno, L., Celata, G.P., Furrer, M., Mariani, A., Zummo, G. 2012. “Flow Boiling Heat Transfer of Refrigerant FC-72 in Microchannels,” International Journal of Thermal Sciences, vol. 53, p. 35–41.
  • Tuo, H., Hrnjak, P. 2013. “Periodical Reverse Flow and Boiling Fluctuations in a Microchannel Evaporator of an Air-Conditioning System,” International Journal of Refrigeration, vol. 36, no. 4, p. 1263–1275.
  • Kuo, C.J., Peles, Y. 2009. “Pressure Effects on Flow Boiling Instabilities in Parallel Microchannels”, International Journal of Heat and Mass Transfer, vol. 52, no. 1–2, p. 271–280.
  • Chen, T., Garimella, S.V. 2011. “Local Heat Transfer Distribution and Effect of Instabilities During Flow Boiling in a Silicon Microchannel Heat Sink,” International Journal of Heat and Mass Transfer, vol. 54, no. 15–16, p. 3179–3190.
  • Wang, Y., Sefiane, K.,Wang, Z.G., Harmand, S. 2014. “Analysis of Two-Phase Pressure Drop Fluctuations During Micro-Channel Flow Boiling,” International Journal of Heat and Mass Transfer, vol. 70, p. 353–362.
  • Thiangtham, P., Keepaiboon, C., Kiatpachai, P., Asirvatham, L. G., Mahian, O., Dalkilic, A. S., Wongwises, S. 2016. “An Experimental Study on Two-Phase Flow Patterns and Heat Transfer Characteristics During Boiling of R134a Flowing Through a Multimicrochannel Heat Sink,” International Journal of Heat and Mass Transfer, vol. 98, p. 390–400.
  • Jafari, R., Okutucu-Özyurt, T., Ünver, H.Ö., Bayer, Ö. 2016. “Experimental Investigation of Surface Roughness Effects on the Flow Boiling of R134a in Microchannels,” Experimental Thermal and Fluid Science, vol. 79, p. 222–230.
  • Chávez, C.A., Leão, H. L.S.L., Ribatski, G. 2017. “Evaluation of Thermal-Hydraulic Performance of Hydrocarbon Refrigerants During Flow Boiling in a Microchannels Array Heat Sink,” Applied Thermal Engineering, vol. 111, p. 703–717.
  • Markal, B., Aydin, O., Avci, M. 2016.“Effect Of Aspect Ratio on Saturated Flow Boiling in Microchannels,” International Journal of Heat and Mass Transfer, vol. 93, p. 130−143.
  • Markal, B., Aydin, O., Avci, M. 2016. “An Experimental Investigation of Saturated Flow Boiling Heat Transfer and Pressure Drop in Square Microchannels,” International Journal of Refrigeration, vol. 65, p. 1−11.
  • Markal, B., Aydin, O., Avci, M. 2016. “Prediction of Heat Transfer Coefficient in Saturated Flow Boiling Heat Transfer in Parallel Rectangular Microchannel Heat Sinks: An Experimental Study,” Heat Transfer Engineering, vol. 38, no. 16, p. 1415-1428.
  • Kline, S.J., McClintock, F.A. 1953. “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, vol. 73, no. 1, p. 3–8, 1953.
  • Megahed, A. 2012. “Local Flow Boiling Heat Transfer Characteristics in Silicon Microchannel Heat Sinks Using Liquid Crystal Thermography,” International Journal of Multiphase Flow, vol. 39, p. 55–65.
  • Balasubramanian, K., Jagirdar, M., Lee, P.S., Teo, C.J., Chou, S.K. 2013. “Experimental Investigation of Flow Boiling Heat Transfer and Instabilities in Straight Microchannels,” International Journal of Heat and Mass Transfer, vol. 66, p. 655–671.
  • Zhuan, R., Wang, W. 2013. “Boiling Heat Transfer Characteristics in a Microchannel Array Heat Sink With Low Mass Flow Rate,” Applied Thermal Engineering, vol. 51, no. 1–2, p. 65–74.
  • Fu, B.R., Lee, C.R., Pan, C. 2013. “The Effect of Aspect Ratio on Flow Boiling Heat Transfer of HFE-7100 in a Microchannel Heat Sink,” International Journal of Heat and Mass Transfer, vol. 58, no. 1–2, p. 53–61.
  • Tuo, H., Hrnjak, P. 2014. “Visualization and Measurement of Periodic Reverse Flow and Boiling Fluctuations in a Microchannel Evaporator of an Air-Conditioning System,” International Journal of Heat and Mass Transfer, vol. 71, p. 639–652.
  • Wu, H.Y., Cheng, P. 2003. “Visualization and Measurements of Periodic Boiling in Silicon Microchannels,” International Journal of Heat and Mass Transfer, vol. 46, no. 14, p. 2603–2614.
  • Hetsroni, G., Mosyak, A., Pogrebnyak, E., Segal, Z. 2006. “Periodic Boiling in Parallel Micro-Channels at Low Vapor Quality,” International Journal of Multiphase Flow, vol. 32, p. 1141–1159.
  • Lee, H.J., Liu, D.Y., Yao, S-C. 2010. “Flow Instability of Evaporative Micro-Channels,” International Journal of Heat and Mass Transfer, vol. 53, p. 1740–1749.
  • Kandlikar, S.G. 2004. “Heat Transfer Mechanisms During Flow Boiling in Microchannels,” Journel of Heat Transfer, vol. 126, p. 8-16.
  • Kandlikar, S.G. 2010. “Scale Effects on Flow Boiling Heat Transfer in Microchannels: A Fundamental Perspective,” International Journal of Thermal Sciences, vol. 49, no. 7, p. 1073- 1085.
  • Harirchian, T., Garimella, S.V. 2008. “Microchannel Size Effects on Local Flow Boiling Heat Transfer to a Dielectric Fluid,” International Journal of Heat and Mass Transfer, vol. 51, no. 15-16, p. 3724–3735.