GELİŞTİRİLMİŞ İKİNCİ DERECE KAYAN KİPLİ KONTROL: TEORİ VE DENEYSEL UYGULAMA

Bu çalışmada, klasik yöntemle kontrol sinyalinin elde edilmesine dayanan ikinci derece kayan kipli kontrol yöntemi geliştirilmiş, sistemdeki belirsizliklere karşı daha etkin kontrol sinyali elde etmek üzere kontrol sinyaline yeni bir parametre eklenmiştir. Kararlılığı teorik olarak ispat edilen yöntem, gerçek bir elektromekanik sisteme uygulanmıştır. Literatürde önerilen başka bir ikinci derece yöntem de aynı sisteme uygulanmış ve başarımları karşılaştırılmıştır. Elde edilen geçici durum ve kararlı durum yanıtları grafiklerle verilmiş ve çeşitli başarım indeksleri ile ölçülmüştür.

IMPROVED SECOND-ORDER SLIDING-MODE CONTROLLER: THEORY AND EXPERIMENTAL APPLICATION

In the present study, a second-order sliding-mode control method is improved by introducing a new parameter with the purpose of obtaining more effective controller against the system uncertainties. The control input is obtained with conventional solution method. The stability of the method is proved theoretically and is applied to a real electromechanical system. Another second-order sliding-mode control method proposed in literature is also applied to the system and performance of the methods is compared. Both transient-state and steady-state responses are given graphically and performance indices are measured.

___

  • 1. Furat, M., Eker, İ. 2013. “Birinci ve İkinci Derece Kayan Kipli Kontrol Algoritmalarında Kontrol Sinyalindeki Salınım Analizi,” XIII. Otomatik Kontrol Seminer ve Sergisi, 16-17 Mayıs 2013, Elektrik Mühendisleri Odası-Makina Mühendisleri Odası, Adana.
  • 2. Ha, Q. P., Rye, D. C., Durrant-Whyte, H. F. 1999. “Robust Sliding Mode Control with Application,” International Journal of Control, vol. 72, no. 12, p. 1087-1096.
  • 3. Eker, İ. 2010. “Second-Order Sliding Mode Control with Experimental Application,” ISA Transactions, vol. 49, no. 3, p. 394-405.
  • 4. Mihoub, M., Nouri, A. S., Abdennour, R. B. 2009. “Real-Time Application of Discrete Second Order Sliding Mode Control to a Chemical Reactor,” Control Engineering Practice, vol. 17, no. 9, p. 1089-1095.
  • 5. Shtessel, Y. B., Shkolnikov, I. A., Levant, A. 2007. “Smooth Second-Order Sliding Modes: Missile Guidance Application,” Automatica, vol. 43, no. 8, p. 1470-1476.
  • 6. Quaiser, S. H., Bhatti, A. I., Iqbal, M., Samar, R., Qadir, J. 2009. “Estimation of Precursor Concentration in a Research Reactor by Using Second-Order Sliding Mode Observer,” Nuclear Engineering and Design, vol. 239, no. 10, p. 2134-2140.
  • 7. Nollet, F., Floquet, F., Perruquetti, W. 2008. “ObserverBased Second Order Sliding Mode Control Laws for Stepper Motors,” Control Engineering Practice, vol. 16, no. 4, p. 429-443.
  • 8. Levant, A. 2007. “Principles of 2-Sliding Mode Design,” Automatica, vol. 43, p. 576-586.
  • 9. Eker, İ. 2006. “Sliding Mode Control with PID Sliding Surface and Experimental Application to an Electromechanical Plant,” ISA Transactions, vol. 43, no. 4, p. 109-118.
  • 10. Kaya, İ. 2007. “Sliding Mode Control of Stable Processes,” Industrial & Engineering Chemistry Research, vol. 46, no. 2, p. 571-578.
  • 11. Camacho, O., Smith, C. A. 2000. “Sliding Mode Control: An Approach to Regulate Nonlinear Chemical Processes,” ISA Transactions, vol. 39, no. 2, p. 205-218.
  • 12. Damiano, A., Gatto, G. L., Marongiu, I. 2004. “Second-Order Sliding-Mode Control of DC Drives,” IEEE Transaction on Industrial Electronics, vol. 51, no. 2, p. 364-373.