KRANK-BİYEL MEKANİZMASINDA AÇIK KUVVET KONTROLÜ

Krank-biyel mekanizmalarının uygulamalarından birisi de pistona sabit itme kuvvetinin uygulandığı besleme sistemleridir. Bu tür sistemlerde temel sorun, krank–biyel mafsal noktasında etkiyen bir ağırlık kuvvetine karşılık, krank konumlarına bağlı olarak itme kuvvetlerinin çok hızlı değişmesidir. Bu çalışmada, belli bir çalışma aralığında itme kuvvetinin istenen sabit değerde tutulması için iki yöntem gösterilmiştir. İlk yöntemde, krank açısından bağımsız sabit itme kuvvetinin elde edilmesi için manuel kontrol süreci ve bundan kaynaklanan hata oranları gösterilmiştir. İkinci yöntemde, açık bir kuvvet kontrol süreci içindeki denetleyici tasarımı ve ilgili hata analizi sonuçları açıklanmıştır. Ayrıca hatayı minimize eden bir yaklaşım sergilenmiştir. Sayısal örneklerle de yöntemlerin etkinlikleri kanıtlanmıştır.

OPEN FORCE CONTROL IN SLIDER-CRANK MECHANISMS

One of the applications of slider-crank mechanisms is feeding systems whereby a constant pushing force is required. The basic problem is that pushing force changes with crank positions in response to a weight applied at the crank-connecting link joint. In this study, two methods are developed to hold the pushing force around a desired value within a working interval. In the first method, manual control process by which an almost constant pushing force is obtained independent of crank position and errors resulting therefrom are shown. In the second method, a controller design required for an open force control process and results of related error analysis are explained. An approach to minimize error is also presented. The effectiveness of the methods is demonstrated on numerical examples.

___

  • 1. Erdil, A. H. 1998. “Buz Rendeleme Makinesi,” Yüksek Lisans Tezi, Ç. Ü. Fen Bilimleri Enstitüsü, Adana.
  • 2. Vinogradov, O. 2000. Fundamentals of Kinematics and Dynamics of Machines and Mechanisms, CRC Press, Boca Raton, Florida.
  • 3. Myszka, D. 2012. Machines and Mechanisms, Applied Kinematic Analysis, 4th Edition, Prentice Hall, New Jersey.
  • 4. Ahmad, F., Hitam, A. L., Hudha, K., Jamaluddin, H. 2011. “Position Tracking of Slider Crank Mechanism Using PID Controller Optimized by Ziegler Nichol’s Method,” Journal of Mechanical Engineering and Technology, vol. 3, no. 2, p. 27-41.
  • 5. Lin, F. J., Wai, R. J. 2001. “Sliding-Mode-Controlled SliderCrank Mechanism with Fuzzy Neural Network,” IEEE Transactions on Industrial Electronics, vol. 48, no. 1. doi: 10.1109/41.904553, p. 60-70.
  • 6. Lin, F. J., Fung, R. F., Lin, H. H., Hong, C. M. 1999. “A Supervisory Fuzzy Neural Network Controller for Slider-Crank Mechanism,” Proceedings of the 1999 IEEE, International Conference on Control Applications, 22-27 Ağustos, 1999, vol. 2, p. 1710-1715. doi: 10.1109/CCA.1999.801229.
  • 7. Lee, C. D., Chuang, C. W., Kao, C. C. 2004. “Apply fuzzy PID Rule to PDA Based Control of Position Control of Slider Crank Mechanism,” IEEE Conference on Cybernetics and Intelligent Systems, 1-3 December 2004, Singapore, vol. 1. doi: 10.1109/ICCIS.2004.1460467, p. 508-513.
  • 8. Faraji, H., Farzadpour, F. 2013. “Intelligent Position Control of Slider-Crank Mechanism in the Ship's Propeller,” 3rd Joint Conference of AI & Robotics and 5th RoboCup Iran Open International Symposium (RIOS), 8th April 2013. doi: 10.1109/RIOS.2013.6595307, p. 1-7.
  • 9. Lin, F. J., Lin, Y. S., Chiu, S. L. 1998. “Slider-Crank Mechanism Control Using Adaptive Computed Torque Technique,” IEE Proceedings - Control Theory and Applications, vol. 145, no. 3, May 1998. doi: 10.1049/ip-cta:19982051, p. 364-376.
  • 10. Chuang, C. W., Lee, C., Huang, C. L. 2006. “Applying Experienced Self-Tuning PID Control to Position Control of Slider Crank Mechanisms,” International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2006, Taonnina, İtalya, 23-26May 2006. doi: 10.1109/ SPEEDAM.2006.1649851, p. 652-657.
  • 11. Lin, F. J., Fung, R. F., Wai, R. J. 1998. “Comparison of Sliding-Mode and Fuzzy Neural Network Control for Motor-Toggle Servomechanism,” IEEE/ASME Transactions on Şekil 13. Eşit Hata Dağılım Metodu ile Bulunan θ1 Açısı ve Sonuçlanan Qnet Değerleri Mechatronics, vol. 3, no. 4. doi: 10.1109/3516.736164, p. 302-318.
  • 12. Yan, H. S., Chen, W. R. 2000. “On the Output Motion Characteristics of Variable İnput Speed Servo-Controlled SliderCrank Mechanisms,” Mechanism and Machine Theory, vol. 35, no. 4. doi: 10.1016/S0094-114X(99)00023-3, p. 541-561.
  • 13. Akçalı, İ. D., Arıoğlu, M. A. 2011. “Geometric Design of Slider-Crank Mechanisms for Desirable Slider Positions and Velocities,” Forschung im Ingenieurwesen, vol. 75. doi: 10.1007/s10010-011-0134-7, p. 61-71.
  • 14. Liu, H. T. J. 1997. “Synthesis and Steady-State Analysis of High-Speed Elastic Cam-Actuated Linkages with Fluctuated Speeds by a Finite Element Method.” Journal of Mechanical Design, vol. 119, p. 395–402.
  • 15. Fung, R. F., Shue, L. C. 2002. “Regulation of Flexible SliderCrank Mechanism by Lyapunov’s Direct Method,” Mechatronics, vol. 12. doi:10.1016/S0957-4158(01)00011-3, p. 503–509.
  • 16. Komaito, Y., Furuta, K. 2008. “Energy Control of SliderCrank Mechanism,” SICE Annual Conference, 20–22 August, 2008, Tokyo, Japonya, p. 2399–2403.
  • 17. Kao, C. C., Chuang, C. W., Fung, R. F. 2006. “The SelfTuning PID Control in a Slider-Crank Mechanism System by Applying Particle Swarm Optimization Approach,” Mechatronics, vol. 16. doi:10.1016/j.mechatronics.2006.03.007, p. 513–522.
  • 18. Fung, R. F., Chang, C. F. 2009. “Force/Motion Sliding Mode Control of Three Typical Mechanisms,” Asian Journal of Control, vol. 11. doi: 10.1002/asjc.96, p. 196–210.