Fiber Metal Laminatlar ve Uçak Sanayiinde Kullanımı Üzerine Bir İnceleme

Günümüzün rekabetçi havacılık ortamında, yüksek performanslı ve hafif uçakların tasarlanması, üretilmesi ve bu kapsamda, yeni üretim metodlarının ve yeni üretim malzemelerinin kullanılması önem arz etmektedir. Bu amaçla, Delft Üniversitesi tarafından geliştirilen Fiber metal laminatlar (FML), yüksek yorulma dirençlerinden dolayı, uçaklarda kullanılan geleneksel alüminyum malzemelere alternatif olarak kullanılabilecek özel kompozit malzemelerdir. Bu çalışmanın amacı FML’lerin tarihçesi, kullanım alanları, çeşitleri ve özellikleri (statik, yorulma, darbe, korozyonve ısı dayanımı) hakkında geniş bir literatür özeti sunmak ve ilerde yapılabilecek çalışmalar hakkında fikir vermektir.
Anahtar Kelimeler:

Laminat, fiber, arall, carall

A Review on Fiber Metal Laminates and Their Usage in Aerospace Industry

In todays competitive aerospace environment, it is very important to design and produce aircrafts with high performance and lightweights and in this context, to find new production processes and new production materials. Forth is reason, Fiber metal laminates (FML) developed by Delft University, are special composite materials that can be used as an alternative to the conventional aluminium materials used in aircrafts for their high fatigue resistance. The aim of this study is to provide a broad literature review about the history of FML, their usage areas, variants and properties (static, fatigue, impact, corrosion and thermal resistance) and to suggest research areas in the future.

___

  • Vogelesang, L.B., Vlot, A. 2000. “Development of fibre metal laminates for advanced aerospace structures”, Journal of Materials Processing Technology, vol. 103, p. 1-5.
  • Şen, İlhan. 2015. “Lay-up optimisation of fibre metal laminates: development of a design methodology for wing structures”, PhD Thesis, Delft University of Technology, The Netherlands.
  • Sinmazçelik, T., Avcu, E., Bora, M. Ö., Çoban, O. 2011. “A review: Fibre metal laminates, background, bonding types and applied test methods”, Materials and Design, vol. 32, p. 3671-3685.
  • Alderliesten, R. 2005. “Fatigue crack propagation and delamination growth in Glare”, PhD Thesis, Delft University of Technology, The Netherlands.
  • Alderliesten R.C., Benedictus R. 2007. ”Fiber/metal composite technology for future primary aircraft structures”, 48th Aiaa/Asme/Asce/Ahs/Asc structures, structural dynamics, and materials conference, 23-26 April, Honolulu, Hawaii.
  • Vlot, A. 1993. “Impact properties of fibre metal laminates”, Composites Engineering, vol. 3, no. 10, p. 911-927.
  • Gutowski, T. G. 1997. ”Advanced composites manufacturing”, First edition, John Wiley & Sons, New York, USA.
  • Alderliesten, R. 2009. “On the development of hybrid material concepts for aircraft structures”, Recent Patents in Engineering, vol. 3, p. 25-38.
  • Roebroeks, G. H. J. J., Hooijmeijer, P. A., Kroon, E. J., Heinimann, M. B. 2007. “The development of CentrAl”, First International Conference on Damage Tolerance of Aircraft Structures, Delft University of Technology, The Netherlands.
  • Laliberte, J. F., Poon, C., Straznicky, P. V., Fahr, A. 2000. “Applications of fiber-metal laminates”, Polymer Composites, vol. 21, no. 4, p. 558-567.
  • Müller, B., Hagenbeek, M., Sinke, J. 2016. “Thermal cycling of (heated) fibre metal laminates”, Composite Structures, vol. 152, p. 106-116.
  • Vlot, A., Vogelesang, L.B., de Vries, T. J. 1999. “Towards application of fibre metal laminates in large aircraft”, Aircraft Engineering and Aerospace Technology, vol. 71, no. 6, p. 558-570.
  • Das, R., Chanda, A., Brechou, J., Banerjee, A. 2016. “Impact behaviour of fibre-metal laminates”, Dynamic Deformation, Damage and Fracture in Composite Materials and Structures, Elsevier Ltd.
  • Schijve, J., Van Lipzig, H.T.M., Van Gestel, G.F.J.A., Hoeymakers, A.H.W. 1979. “Fatigue properties of adhesive-bonded laminated sheet material of aluminum alloys”, Engineering Fracture Mechanics, vol. 12, p. 561-579
  • Vermeeren, C. A. J. R. 2003. “An historic overview of the development of fibre metal laminates”, Applied Composite Materials, vol. 10, p. 189-205.
  • Surowska, B., Jakubczak, P., Bienias, J. 2017. “Structure and chemistry of fiber metal laminates”, Hybrid Polymer Composite Materials: Properties and Characterisation, Elsevier Ltd.
  • Chai, G. B., Manikandan, P. 2014. “Low velocity impact response of fibre-metal laminates – A review”, Composite Structures, vol. 107, p. 363-381.
  • Alderliesten, R., Rans, C., Benedictus, R. 2008. “The applicability of magnesium based Fibre Metal Laminates in aerospace structures”, Composites Science and Technology, vol. 68, p. 2983-2993.
  • de Koos, M. G. 1990. “PEEK Carbon fibre reinforced titanium laminates”, Master Thesis, Delft University of Technology, The Netherlands.
  • Medenblik, E. W. 1994. “Titanium fibre-metal laminates”, Master Thesis, Delft University of Technology, The Netherlands.
  • Alderliesten, R. 2017. “Fatigue and fracture of fibre metal laminates”, Springer International Publishing AG, Switzerland.
  • Linganiso, L.Z., Anandjiwala, R. D. 2016. “Fibre-reinforced laminates in aerospace engineering”, Advanced Composite Materials for Aerospace Engineering, Elsevier Ltd.
  • Roebroeks, G. H. J. J. 1991. “Towards GLARE-the development of a fatigue insensitive and damage tolerant aircraft material”, PhD Thesis, Delft University of Technology, The Netherlands.
  • Asundi, A., Choi, A. Y. N. 1997. “Fiber metal laminates: an advanced material for future aircraft”, Journal ofMaterials Processing Technology, vol. 63, p. 384-394.
  • Mangalgiri, P. D. 1999. “Composite material for aerospace applications”, Bulletin of Material Science, vol. 22, no. 3, p. 656-664.
  • Vlot, A., Gunnink, J. W. 2001. “Fiber metal laminates: an introduction”, Kluwer Academic Publishers, Dordrecht.
  • Wu, G., Yang, J. M. 2005. “The mechanical behavior of GLARE laminates for aircraft structures”, JOM, vol. 75, p. 72-79.
  • Bienias, J., Jakubczak, P., Surowska, B. 2017. “Properties and characterization of fiber metal laminates”, Hybrid Polymer Composite Materials: Properties and Characterisation, Elsevier Ltd.
  • Grigoriou, K., Mouritz, A. P. 2018. “Modelling and testing of fibre metal laminates and their constituent materials in fire”, Composite Structures, vol. 200, p. 25-35.
  • Alderliesten, R., Hagenbeek, M., Homan, J. J., Hooijmeijer, P. A., De Vries, T. J., Vermeeren, C. A. J. R. 2003. “Fatigue and damage tolerance of glare”, Applied Composite Materials, vol. 10, p. 223–242.
  • Beumler, T. 2004. “Flying GLARE®: A contribution to aircraft certification issues on strength properties in non-damaged and fatigue damaged GLARE® structures”, PhD thesis, Delft University of Technology, The Netherlands.
  • Roebroeks, G. H. J. J. 1992. “Fiber metal laminates-recent developments and applications’’, Fatigue of Aircraft Materials, Delft University Press, Delft.
  • Kieboom, O. 2000. “Fatigue crack initiation and early crack growth in Glare at different temperatures”, Master thesis, Delft University of Technology, The Netherlands.
  • Vermeeren, C. A. J. R., Beumler, Th., De Kanter, J. L. C. G., Van der Jagt, O. C., Out, B. C. L. 2003. “Glare design aspects and philosophies”, Applied Composite Materials, vol. 10, p. 257-276.
  • Mattousch, A.C. 1992. “Structural application of stacked GLARE – Design, production and testing of the CN-235 forward attachment fitting lug”, Master Thesis, Delft University of Technology, The Netherlands.
  • Vogelesang, L.B., Schijve, J. 1995. “Fibre metal laminates: damage tolerant aerospace materials”, Case Studies in Manufacturing with Advanced Materials, vol. 2, p. 259-260.
  • Vlot, A. 1993. “Low-velocity impact loading: on fibre reinforced aluminium laminates (ARALL and GLARE) and other aircraft sheet materials”, PhD thesis, Delft University of Technology, The Netherlands.
  • Jakubczak, P., Bienias, J., Surowska, B. 2017. “Impact resistance and damage of fiber metal laminates”, Hybrid Polymer Composite Materials: Properties and Characterisation, Elsevier Ltd.
  • Compston, P., Cantwell, W.J., Jones, C., Jones, N. 2001. “Impact perforation resistance and fracture mechanisms of a thermoplastic based fiber-metal laminate”, Journal of Materials Science Letters, vol. 20, no. 7, p. 597-599.
  • Bienias, J., Surowska, B., Jakubczak, P. 2016. “The comparison of low velocity impact resistance of aluminum/carbon and glass fiber metal laminates”, Polymeric Composites, vol. 4, no. 3, p. 1056-1063.
  • Lawcock, G. D., Ye, L., Mai, Y. W., Sun, C. T. 1997. “Effects of fibre/matrix adhesion on carbon-fibre-reinforced metal laminates-II. Impact behavior”, Composite Science Technology, vol. 57, p. 1621-1628.
  • Bienias, J., Jakubczak, P. 2017. “Impact damage growth in carbon fibre aluminium laminates”, Composite Structures, vol. 172, p. 147-154.
  • Morinière, F.D., Alderliesten, R.C., Sadighi, M., Benedictus, R. 2013. “An integrated study on the low-velocity impact response of the GLARE fibre-metal laminate”, Composite Structures, vol. 100, p. 89–103.
  • Hoo, M. S. F., Lin, C., Revilock, D. M., Hopkins, D. A. 2003. “Ballistic impact of GLARE fiber-metal laminates”, Composite Structures, vol. 61, no. 1-2, p. 73-88.
  • Song, S. H., Byun, Y. S., Ku, T. W., Song, W. J., Kim, J., Kang, B. S. 2010. “Experimental and numerical investigation on impact performance of carbon reinforced aluminum laminates”, Journal of Material Science and Technology, vol. 26, no. 4, p. 327-332.
  • Wu, G. Yang, J. M. Hahn, H. T. 2007. “The impact properties and damage tolerance of bi-directionally reinforced fiber metal laminates”, Journal of Material Science, vol. 42, p. 948-957.
  • Moriniere, F. D. 2014. “Low-velocity impact on fibre-metal laminates”, PhD thesis, Delft University of Technology, The Netherlands.
  • Zarei, H., Sadighi, M., Minak, G. 2017. “Ballistic analysis of fiber metal laminates impacted by flat and conical impactors”, Composite Structures, vol. 161, p. 65-72.
  • Morinière, F.D., Alderliesten, R.C., Benedictus, R. 2013. “Low-velocity impact energy partition in GLARE”, Mechanics of Materials, vol. 66, p. 59-68.
  • Langdon, G. S., Chi, Y., Nurick, G. N., Haupt, P. 2009. “Response of GLARE panels to blast loading”, Engineering Structures, vol. 31, p. 3116-3120.
  • Vlot, A., Krull. M. 1997. “Impact damage resistance of various fibre metal laminates”, Journal de Physique IV Colloque, vol. 7, no. 3, p. 1045-1050.
  • Vlot, A. 1996. “Impact loading on fibre metal laminates”, International Journal of Impact Engineering, vol. 18, no. 3, p. 291-307.
  • Sadighi, M., Alderliesten, R. C., Benedictus, R. 2012. “Impact resistance of fiber-metal laminates: A review”, International Journal of Impact Engineering, vol. 49, p. 77-90.
  • Sadighi, M., Pärnänen, T., Alderliesten, R.C., Sayeaftabi, M., Benedictus, R. 2012. “Experimental and numerical investigation of metal type and thickness effects on the impact resistance of fiber metal laminates”, Applied Composite Materials, vol. 19, p. 545-559.
  • Yu, G., Wu, L., Ma, L., Xiong, J. 2015. “Low velocity impact of carbon fiber aluminum laminates”, Composite Structures, vol. 119, p. 757-766.
  • Caprino, G., Spataro, G., Del Luongo, S. 2004. “Low-velocity impact behaviour of fibre glass-aluminium laminates”, Composite Part A: Applied Science and Manufacturing, vol. 35, p. 605-616.
  • Morinière, F. D., Alderliesten, R. C., Benedictus, R. 2014. “Modelling of impact damage and dynamics in fibre-metal laminates-a review”, International Journal of Impact Engineering, vol. 67, p. 27-38.
  • Homan, J. J. 2006. “Fatigue initiation in fibre metal laminates”, International Journal of Fatigue, vol. 28, no. 4, p. 366-374.
  • Patryk, J., Jaroslaw, B., Krzysztof, M., Monika, O., Barbara, S. 2014. “The impact behavior of aluminum hybrid laminates”, Aircraft Engineering and Aerospace Technology, vol. 86, p. 287-294.
  • Fan, J., Guan, Z.W., Cantwell, W.J. 2011. “Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading”, Composite Structures, vol. 93, p. 2430-2436.
  • Asaee, Z., Shadlou, S., Taheri, F. 2015. “Low-velocity impact response of fiberglass/magnesium fmls with a new 3d fiberglass fabric”, Composite Structures, vol. 122, p. 155-165.
  • Thomason, J. L. 2009. “The influence of fibre length, diameter and concentration on the impact performance of long glass-fibre reinforced polyamide 6,6”, Composites Part A: Applied Science and Manufacturing, vol. 40, p. 114-124.
  • Özşahin, E., Tolun, S. 2010. “Influence of surface coating on ballistic performance of aluminum plates subjected to high velocity impact loads”, Material Design, vol. 31, no. 3, p. 1276-1283.
  • Guillén, J. F., Cantwell, W. J. 2002. “The influence of cooling rate on the fracture properties of a glass reiforced/nylon fiber-metal laminate”, Polymer Composites, vol. 23, no. 5, p. 839-851.
  • Liaw, B., Liu, Y., Villars, E. 2001. “Impact damage mechanisms in fiber-metal laminates”, SEM Annual Conference on Experimental and Applied Mechanics, 4-6 June, Portland, Oregon, p. 536-539.
  • Laliberté, J. F., Straznicky, P. V., Poon, C. 2005. “Impact damage in fiber metal laminates, Part 1: experiment”, AIAA Journal, vol. 43, no. 11, p. 2445-2453.
  • Laliberté, J.F., Poon, C., Straznicky, P.V., Fahr, A. 2002. “Post-impact fatigue damage growth in fiberemetal laminates”, International Journal of Fatigue, vol. 24, no. 2-4, p. 249-256.
  • Yaghoubi, A.S., Liu, Y., Liaw, B. 2012. “Stacking sequence and geometrical effects on low-velocity impact behaviors of GLARE 5 (3/2) fiberemetal laminates”, Journal of Thermoplastic Composite Materials, vol. 25, no. 2, p. 223-247.
  • Badawy, A.A.M. 2012. “Impact behavior of glass fibers reinforced composite laminates at different temperatures”, Ain Shams Engineering Journal, vol. 3, p. 105-111.
  • Zhu, S., Chai, G.B. 2012. “Low-velocity impact response of fibre–metal laminates, experimental and finite element analysis”, Composites Science and Technology, vol. 72, p. 1793-1802.
  • Tsartsaris, N., Meo, M., Dolce, F., Polimeno, U., Guida, M., Marulo, F. 2011. “Low-velocity impact behavior of fiber metal laminates”, Journal of Composite Materials, vol. 45, no.7, p.803-814.
  • Kashani, M. H., Sadighi, M., Mohammadkhah, M., Alavijeh, H. S. 2013. “Investigation of scaling effects on fiber metal laminates under tensile and flexural loading”, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, DOI: 10.1177/1464420713507411
  • Yaghoubi, A. S., Liaw, B. 2012. “Thickness influence on ballistic impact behaviors of glare 5 fiber-metal laminated beams: Experimental and numerical studies”, Composite Structures, vol. 94, p. 2585-2598.
  • Yaghoubi, A. S., Liaw, B. 2013. “Effect of lay-up orientation on ballistic impact behaviors of glare 5 fml beams”, International Journal of Impact Engineering, vol. 54, p. 138-148.
  • Ibekwe, S.I., Mensah, P.F., Li, G., Pang, S. S., Stubblefield, M. A. 2007. “Impact and post impact response of laminated beams at low temperatures”, Composite Structures, vol. 79, p. 12-17.
  • Sharma, A. P., Khan, S. H., Kitey, R., Parameswaran, V. 2018. “Effect of through thickness metal layer distribution on the low velocity impact response of fiber metal laminates”, Polymer Testing, vol. 65, p. 301-312.
  • Liu, Y., Liaw, B. 2010. “Effects of constituents and lay-up configuration on drop-weight tests of fiber-metal laminates”, Applied Composite Materials, vol. 17, p. 43-62.
  • Guan, Z. W., Cantwell, W. J., Abdullah, R. 2009. “Numerical modeling of the impact response of fiber-metal laminates”, Polymeric Composites, vol. 30, no. 5, p. 603-611.
  • Burianek, D.A., Spearing, S.M. 2002. “Fatigue damage in titanium-graphite hybrid laminates”, Composites Science and Technology, vol. 62, p. 607-617.
  • Abdullah, M.R., Cantwell, W. J. 2006. “The impact resistance of polypropylene-based fibre–metal laminates”, Composites Science and Technology, vol. 66, p. 1682-1693.
  • Bikakis, G. S. E., Dimou, C. D., Sideridis, E. P. 2017. “Ballistic impact response of fiber–metal laminates and monolithic metal plates consisting of different aluminum alloys”, Aerospace Science and Technology, vol. 69, p. 201–208.
  • Tjahjono, S. 1998. “Consequences and challenges of Glare for structural repair and newly designed fuselage structure”, PhD thesis, Delft University of Technology, The Netherlands.
  • Vermeeren, C. A. J. R. 1991. “The application of carbon fiber in ARALL Laminates”, Delft University of Technology, Report LR-658.
  • Lin, C. T., Kao, P. W., Jen, M. H. R. 1994. “Thermal residual strains in carbon fiber-reinforced aluminum laminates”, Composites, vol. 25, no. 4, p. 303-307.
  • Rans, C.D., Alderliesten, R.C., Benedictus, R. 2011. “Predicting the influence of temperature on fatigue crack propagation in Fibre Metal Laminates”, Engineering Fracture Mechanics, vol. 78, p. 2193-2201.
  • van der Kevie, G. 1997. “The modification of GLARE to develop a more fire-resistant and non-delaminating fuselage skin for the Airbus A3XX”, PhD thesis, Delft University of Technology, The Netherlands.
  • da Costa, A. A., da Silva, D. F. N. R., Travessa, D. N., Botelho, E. C. 2012. “The effect of thermal cycles on the mechanical properties of fiber–metal laminates”, Materials and Design, vol. 42, p. 434-440.
  • Prasad, N. E., Gokhale, A. A., Wanhill, R. J. H. 2014. “Aluminum – Lithium alloys, processing, properties, and applications”, Butterworth-Heinemann, Boston, p. 503-535.
  • Williams, J. C., Starke, E. A. 2003. “Progress in structural materials for aerospace systems”, Acta Materialia, vol. 51, p. 5775-5799.