Epoksi Esaslı Polimerik Kaplamaların Aşınma Davranışlarının İncelenmesi

Polimerik kaplamalar farklı malzemelere uygulanabilirliği, maliyeti ve etkinliği açısından diğer kaplama tekniklerine göre üstünlüğü bulunmaktadır. Epoksi esaslı polimerik kaplamaların yüksek aşınma ve korozyon direncine, iyi bir kimyasal ve termal kararlılığa, özellikle çok iyi yapıştırıcı özelliğine sahip olması nedeniyle otomotiv, imalat, inşaat, elektronik gibi endüstrilerde kullanımı yaygınlaşmıştır. Bu çalışmada, ASTM G99-17 standardına uygun olarak 5, 10 ve 15 N yük ve 300, 600, 900 s sürelerde çelik disk numunelere uygulanan epoksi kaplamaların aşınma davranışı incelenmiştir. Sürtünme katsayıları deneysel olarak belirlenmiştir. Alüminyum dolgulu Epoksi 1’e kıyasla mineral dolgulu Epoksi 2, artan aşınma sürelerinde ve yüklerde daha iyi performans göstermiştir. Epoksi 1 kaplamalarda %10 bor karbür (B4C) katkısının uzun aşınma sürelerinde olumlu etkisinin olduğu, %20 B4C katkısının ise fiziksel yapıyı bozduğu, dolayısıyla aşınma direncini düşürdüğü görülmüştür. Elde edilen sonuçlar değerlendirildiğinde, uzun aşınma sürelerinde ve artan yüklerde en az kütle kaybeden mineral dolgulu Epoksi 2 olmuştur.

Investigation of Wear Behaviour of Epoxy-Based Polymeric Coatings

Polymeric coatings have superiority over the other coating techniques in terms of applicability on different materials, cost and effectiveness. Epoxy-based polymeric coatings have become widespread application in industries such as automotive, manufacturing, construction, electronics, due to their high wear and corrosion resistance, good chemical and thermal stability, and especially very good adhesive properties. In this study, the wear behavior of epoxy coatings applied to steel disc specimens were investigated at 5, 10, and 15 N loads and 300, 600, and 900 seconds in accordance with ASTM G99-17 standard. The coefficients of friction were determined experimentally. Compared to aluminum-filled Epoxy 1, mineral-filled Epoxy 2 performed better at increased wear times and loads. It has been observed that 10% boron carbide (B4C) additive in Epoxy 1 coatings has a positive effect on long wear times, while 20% B4C additive deteriorates the physical structure, thus reducing the wear resistance. When the results obtained are evaluated, Epoxy 2 lost the least mass at long wear times and increasing loads.

___

  • Symonds, N., Mellor, B.G. 1999. “Polymeric coatings for impact and wear resistance”, Wear, 225-229, 111-118.
  • Xu, Y.M., Mellor, B.G. 2003. “A comparative study of the wear resistance of thermoplastic and thermoset coatings”, Wear, 255, 722-733.
  • Xing, X.S., Li, R.K.Y. 2004. “Wear behavior of epoxy matrix composites filled with uniform sized sub-micron spherical silica particles”, Wear, 256, 21-26.
  • Kanchanomai, C., Noraphaiphipaksa, N., Mutoh, Y. 2011. “Wear characteristic of epoxy resin filled with crushed-silica particles”, Composites Part B: Engineering, 42, 1446- 1452.
  • Shi, G., Zhang, M.Q., Ronga, M.Z., Wetzel, B., Friedrich, K. 2004. “Sliding wear behavior of epoxy containing nano-Al2O3 particles with different pretreatments”, Wear, 256, 1072-1081.
  • Li, X., Gao, Y., Xing, J., Wang, Y., Fang, L. 2004. “Wear reduction mechanism of graphite and MoS2 in epoxy composites”, Wear, 257, 279-283.
  • Wetzel, B., Rosso, P., Haupert, F., Friedrich, K. 2006. “Epoxy nanocomposites – fracture and toughening mechanisms”, Engineering Fracture Mechanics, 73(16), 2375-2398.
  • Kim, S.S., Lee, H.G., Lee, D.G. 2007. “The tribological behavior of polymer coated carbon composites under dry and water lubricating conditions”, Composite Structures, 77 (3), 364-372.
  • McCook, N.L., Burris, D.L., Kim, N.H., Sawyer, W.G. 2007. “Cumulative damage modeling of solid lubricant coatings that experience wear and interfacial fatigue”, Wear, 262, 1490-1495.
  • Amiriyan, M., Alamdari, H. D., Blais, C., Savoie, S., Schulz, R., Gariépy, M. 2015. “Dry sliding wear behavior of Fe3Al and Fe3Al/TiC coatings prepared by HVOF”, Wear, 342-343, 154-162.
  • Srinivas, K., Bhagyashekar, M.S. 2014. “Wear behaviour of epoxy hybrid particulate composites”, Procedia Engineering, 97, 488-494.
  • Abenojar, J., Martínez, M. A., Velasco, F., Pascual-Sánchez, V., Martín-Martínez, J. M. 2009. “Effect of boron carbide filler on the curing and mechanical properties of an epoxy resin”, The Journal of Adhesion, 85(4,5), 216-238.
  • Bello, J.O., Wood, R.J.K. 2009. “Wireline wear resistance of filled and unfilled polymeric coatings for downhole applications”, Wear, 267, 661-668.
  • Basavarajappa, S., Ellangovan, S. 2012. " Dry sliding wear characteristics of glass– epoxy composite filled with silicon carbide and graphite particles", Wear, 296, 491- 496.
  • Kumar, V., Sinha, S.K., Agarwal, A.K. 2017. “Tribological studies of epoxy composites with solid and liquid fillers”, Tribology International, 105, 27-36.
  • Jakab, B., Panaitescu, I., Gamsjäger, N. 2021. “The action of fillers in the enhancement of the tribological performance of epoxy composite coatings”, Polymer Testing, 100.
  • Tahir, N.A.M., Abdollah, M.F.B, Hasan, R., Amiruddin, H. 2016. “The effect of sliding distance at different temperatures on the tribological properties of a palm kernel activated carbon–epoxycomposite”, Tribology International, 94, 352-359.
  • Lan, P., Gheisari, R., Meyer, J.L., Polycarpou, A.A. 2018. “Tribological performance of aromatic thermosetting polyester (ATSP) coatings under cryogenic conditions”, Wear, 398-399, 47-55.
  • Avilés, M.D., Jiménez N. Saurín, A.E., Carrión, F.J., Sanes, J., Bermúdez, M.D. 2018. “Tribological characterization of epoxy coatings modified with ionic liquids and graphene”, Tribology International, 149.
  • Taşyürek, M., Düzcukoğlu, H. 2022. “Epoksi reçinesinin bor karbür takviyeli aşınma davranışının iyileştirilmesi”, İran Polym, 31, 169–184.
  • Yalnız, E.T. 2022. “Epoksi Esaslı Polimerik Kaplamaların Tribolojik Özelliklerinin İncelenmesi”, Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli.
  • Kan, W.H., Chang, L. 2021. “The mechanisms behind the tribological behaviour of polymer matrix composites reinforced with TiO2 nanoparticles”, Wear, 474-475.
  • Medabalimi, S.R., Ramesh, M.R., Kadoli, R. 2021. “Developing partially oxidized NiCr coatings using the combined flame spray and plasma spray process for improved wear behaviour at high temperature”, Wear, 478-479.
  • https://www.weicon.com.tr/media/pdf/17/f6/60/TDS_10300005_TR_WEICON_WR.pdf
  • https://www.weicon.com.tr/media/pdf/34/75/56/TDS_10150005_TR_WEICON_F.pdf
  • ASTM G99-17. 2017. “Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus1”, American Society for Testing and Materials.
Mühendis ve Makina-Cover
  • ISSN: 1300-3402
  • Yayın Aralığı: 4
  • Başlangıç: 1957
  • Yayıncı: TMMOB MAKİNA MÜHENDİSLERİ ODASI