Dinamik Mikroakışkan Hücre Kültürü Platformlarında Difüzyon-Konveksiyon Proseslerinin Hesaplamalı Akışkanlar Dinamiği Modellemesi

Mikroakışkan tabanlı biyokimyasal analizler, hücre ve doku mühendisliğindeki son gelişmeler, mikroakışkan sistemler içinde uzaysal-zamansal olarak kütle transferinin kontrol edilmesine dayanmaktadır. Mikroakışkan sistemler ile hücresel mikroçevrenin kontrol edilmesi ve doku benzeri yapıların taklit edilmesinin yanısıra, yüksek verimli analizlerin gerçekleştirilmesinde de oldukça kullanışlı araçlardır. Bu sistemler biyoaktif moleküllerin, nütrientlerin, büyüme faktörlerinin ve diğer hücresel regülatör moleküllerin konsantrasyon gradientlerinin zamana ve konuma bağlı olarak kontrol etme potansiyeline sahiptir. Bu nedenle mikrosistemlerde biyomoleküllerin taşınım olaylarının modellenmesi, mikroakışkan platformların tasarımını ve kantitatif biyolojik analizleri kolaylaştıran değerli ve kullanışlı bir analitik araçtır. Geliştirilen analitik model mikroakışkan sistem tasarımına rehberlik ettiğinden; maliyetli ve zaman alıcı deneyler minimuma indirilebilmekte; tasarım süreci verimliliği ve etkinliği arttırılabilmektedir. Çalışma kapsamında ilaç taşınım uygulamalarına yönelik tek kanallı mikroakışkan platformda biyomoleküllerin difüzyon ve konveksiyon proseslerine vurgu yaparak kütle transferi profilini gösteren analitik bir model oluşturulmuştur. Mikroakışkan hücre kültürü sistemlerinin hücresel fizyolojik ortamların akış dinamiğini taklit edebilmesi için pulsatil laminar sıvı akışını sağlayabilen peristaltik pompa ile sistem kurulmuştur. Dinamik akış koşulları altında hücreler üzerine etki eden biyomekanik kuvvetlerin (akış hızı, konsantrasyon, basınç dağılımı ve kayma gerilimi) etkisini sayısal olarak incelemek için COMSOL Multiphysics sonlu elemanlar yazılımı kullanılarak mikroakışkan sistemin sayısal simülasyonu yapılmıştır. Mikroakışkan sistemde hücreler minimum kayma gerilimine maruz bırakılırken, kanal uzunluğu boyunca konsantrasyon profilinin korunduğu gösterilmiştir. Akış hızının arttırılmasıyla mikro kanal boyunca çözünen konsantrasyon dağılımı değiştirilebilmektedir ve bu da hücreler üzerindeki kayma gerilimini arttırmaktadır. Simülasyonu yapılan mikroakışkan analitik modelin, hücre kültürü, biyolojik analizler ve ilaç taşıyıcı sistemler için kullanılacak mikroakışkan platformların geliştirilmesinde sistem tasarımı ve parametre seçimi için temel olarak kullanılabileceği düşünülmüştür.

Computational Fluid Dynamics Modeling of Diffusion-Convection Processes on Dynamic Microfluidic Cell Culture Platforms

Microfluidic-based biochemical analyzes and recent developments in cell/tissue engineering are based on controlling spatio-temporally mass transfer in microfluidic systems. These systems are useful tools for controlling the cellular microenvironment and simulating tissue-like structures, as well as performing high-throughput analysis. Therefore, modeling of transport processes of biomolecules in microsystems is a valuable and useful analytical tool that facilitates the design of microfluidic platforms and quantitative biological analysis. Within the scope of the study, an analytical model was created that shows the mass transfer profile by emphasizing the diffusion and convection processes of biomolecules in a single-channel microfluidic platform for drug transport applications. In order to mimic the flow dynamics of cellular physiological environments, the microsystem was established with a peristaltic pump that can provide pulsatile laminar fluid flow. Numerical simulation of the microsystem was performed using COMSOL software to numerically examine the effects of biomechanical forces (flow rate, concentration, pressure distribution and shear stress) acting on cells under dynamic flow conditions. In the microfluidic system, it has been shown that the concentration profile is maintained along the length of the channel while the cells are exposed to the minimum shear stress. By increasing the flow rate, the concentration distribution along the microchannel can be changed, increasing the shear stress on the cells. It is thought that the simulated microfluidic analytical model can be used as a basis for system design and parameter selection in the development of microfluidic platforms to be used for cell culture, biological analyzes and drug delivery systems.

___

  • Volpatti, L. R., Yetisen, A. K. 2014. “Commercialization of microfluidic devices”, Trends in Biotechnology, vol. 32, p. 347–350. DOI: 10.1016/j.tibtech.2014.04.010.
  • Zhang, B., Radisic, M. 2017. “Organ-on-A-chip devices advance to market”, Lab on a Chip, vol. 17, p. 2395–2420. DOI: 10.1039/c6lc01554a.
  • Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y., Ingber, D. E. 2010. “Reconstituting organ-level lung functions on a chip”, Science, vol. 328, p. 1662–1668. DOI: 10.1126/science.1188302.
  • Huh, D., Leslie, D. C., Matthews, B. D., Fraser, J. P., Jurek, S., Hamilton, G. A., Thorneloe, K. S., McAlexander, M. A., Ingber, D. E. 2012. “A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice”, Science Translational Medicine, vol. 4, p. 147-159. DOI: 10.1126/scitranslmed.3004249.
  • Marx, U., Walles, H., Hofmann, S., Lindner, G., Horland, R., Sonntag, F., Klotzbach, U., Sakharov, D., Tonevitsky, A., Lauster, R. 2012. ‘Human-on-a-chip’ developments: a translational cutting-edge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man? Alternatives to Laboratory Animals, vol. 40, p. 235–257. DOI: 10.1177/026119291204000504.
  • Edington, C. D., Chen, W. L. K., Geishecker, E., et al., Griffith, L. G. 2018. “Interconnected microphysiological systems for quantitative biology and pharmacology studies”, Scientific Reports, vol. 8, p. 4530. DOI: 10.1038/s41598-018-22749-0.
  • Siyan, W., Feng, Y., Lichuan, Z., Jiarui, W., Yingyan, W., Li, J., Bingcheng, L., Qi, W. 2009. “Application of microfluidic gradient chip in the analysis of lung cancer chemotherapy resistance”, Journal of Pharmaceutical and Biomedical Analysis, vol. 49, p. 806–810. DOI: 10.1016/j.jpba.2008.12.021.
  • Chung, B. G., Choo, J. 2010. “Microfluidic gradient platforms for controlling cellular behavior”, Electrophoresis, vol. 31, p. 3014–3027. DOI: 10.1002/elps.201000137.
  • Even-Ram, S., Yamada, K. M. 2005. “Cell migration in 3D matrix”, Current Opinion in Cell Biology, vol. 17, p. 524–532. DOI: 10.1016/j.ceb.2005.08.015.
  • Zaman, M. H., Kamm, R. D., Matsudaira, P., Laufenburger, D. A. 2005. “Computational model for cell migration in three-dimensional matrices”, Biophysical Journal, vol. 89, p. 1389–1397. DOI: 10.1529/biophysj.105.060723.
  • Kinsey, S. T., Locke, B. R., Dillaman, R. M. 2011. “Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle”, Journal of Experimental Biology, vol. 214, p. 263–274. DOI:10.1242/jeb.047985.
  • Riahi, R., Yang, Y. L., Kim, H., Jiang, L., Wong, P. K., Zohar, Y. 2014. “A microfluidic model for organ specific extravasation of circulating tumor cells”, Biomicrofluidics, vol. 8, p. 024103. DOI: 10.1063/1.4868301.
  • Wikswo, J. P., Curtis, E. L., Eagleton, Z. E., Evans, B. C., Kole, A., Hofmeister, L. H., Matloff, W. J. 2013. “Scaling and systems biology for integrating multiple organs-on-a-chip”, Lab on a Chip, vol. 13, p. 3496–3511. DOI: 10.1039/c3lc50243k.
  • Kuo, J. S., Chiu, D. T. 2011. “Controlling Mass Transport in Microfluidic Devices”, Annual Review of Analytical Chemistry, vol. 4, p. 275–296. DOI: 10.1146/annurev-anchem-061010-113926.
  • Frost, T. S., Estrada, V., Jiang, L., Zohar, Y. 2019. “Convection–difusion molecular transport in a microfluidic bilayer device with a porous membrane”, Microfluidics and Nanofluidics, vol. 23, p. 114. DOI: 10.1007/s10404-019-2283-1.
  • Korin, N., Gounis, M. J., Wakhloo, A. K., Ingber, D. E. 2015. “Targeted Drug Delivery to Flow-Obstructed Blood Vessels Using Mechanically Activated Nanotherapeutics”, JAMA Neurology, vol. 72, p. 119-122. DOI: 10.1001/jamaneurol.2014.2886.
  • Chistiakov, D. A., Orekhov, A. N., Bobryshev, Y. V. 2017. “Effects of shear stress on endothelial cells: go with the flow”, Acta Physiologica, vol. 219, p. 382-408. DOI: 10.1111/apha.12725.
  • Zhang, X., Jones, P., Haswell, S. J. 2008. “Attachment and detachment of living cells on modified microchannel surfaces in a microfluidic-based lab-on-a-chip system”, Chemical Engineering Journal, vol. 135, p. 82-88. DOI: 10.1016/j.cej.2007.07.054.
  • Plouffe, B. D., Njoka, D. N., Harris, J., Liao, J., Horick, N. K., Radisic, M., Murthy, S. K. 2007. “Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow”, Langmuir, vol. 23, p. 5050-5055. DOI: 10.1021/la0700220.
  • Plouffe, B. D., Kniazeva, T., Mayer, J. E., Murthy, S. K., Sales, V. L. 2009. “Development of microfluidics as endothelial progenitor cell capture technology for cardiovascular tissue engineering and diagnostic medicine”, FASEB J. vol. 23, p. 3309-3314. DOI: 10.1096/fj.09-130260.
  • Sorescu, G. P., Sykes, M., Weiss, D., Platt, M. O., Saha, A., Hwang, J., Boyd, N., Boo, Y. C., Vega, J. D., Taylor, W. R., Jo, H. 2003. “Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response”, Journal of Biological Chemistry, vol. 278, p. 31128-31135. DOI: 10.1074/jbc.M300703200.
  • Glen, K., Luu, N. T., Ross, E., Buckley, C. D., Rainger, G. E., Egginton, S., Nash, G. B. 2012. “Modulation of functional responses of endothelial cells linked to angiogenesis and inflammation by shear stress: differential effects of the mechanotransducer CD31”, Journal of Cellular Physiology, vol. 227, p. 2710-2721. DOI: 10.1002/jcp.23015.
  • Stolberg, S., McCloskey, K. E. 2009. “Can shear stress direct stem cell fate?”, Biotechnology Progress, vol. 25, p. 10-19. DOI 10.1021/bp.124.
  • Kshitiz, K. K., Park, J., Kim, P., Helen, W., Engler, A. J., Levchenko, A., Kim, D. H., 2012. “Control of stem cell fate and function by engineering physical microenvironments”, Integrative Biology, vol. 4, p. 1008-1018. DOI: 10.1039/c2ib20080e.
  • Panigrahi, P. K. 2016. “Transport Phenomena in Microfluidic Systems”, John Wiley & Sons, pp. 13-19. Print ISBN:9781118298411 |Online ISBN:9781118298428. DOI:10.1002/9781118298428
  • Yuki, T., Masayuki, Y., Teruo, O., Takehiko, K., Kiichi, S. 2006. “Evaluation of effects of shear stress on hepatocytes by a microchip-based system”, Measurement Science and Technology, vol. 17, p. 3167. DOI: 10.1088/0957-0233/17/12/S08.
  • Yildiz-Ozturk, E., Yucel, M., Yesil-Celiktas, O. 2018. “A generic model for diffusive dynamics of the substrate and fluorescein tagged enzyme in microfluidic platform”, Microsystem Technologies, vol. 24, p. 3095–3105. DOI: 10.1007/s00542-018-3746-0.
  • Yildiz-Ozturk, E., Yucel, M., Muderrisoglu, C., Sargin, S., Yesil-Celiktas, O. 2017. “Modelling coupled dynamics of diffusive–convective mass transfer in a microfluidic device and determination of hydrodynamic dispersion coefficient”, Journal of the Taiwan Institute of Chemical Engineers, vol. 80, p. 100–106. DOI: 10.1016/j.jtice.2017.08.033.
  • Squires, T., Messinger, R., Manalis, S. 2008. “Making it stick: convection, reaction and diffusion in surface-based biosensors”, Nature Biotechnology, vol. 26, p. 417–426. DOI: 10.1038/nbt1388.
  • Hubatsch, I., Ragnarsson, E. G. E., Artursson, P. 2007. “Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers”, Nature Protocols, vol. 2, p. 2111–2119. DOI: 10.1038/nprot.2007.303.
  • Siyan, W., Feng, Y., Lichuan, Z., Jiarui, W., Yingyan, W., Li, J., Bingcheng, L., Qi, W. 2009. “Application of microfluidic gradient chip in the analysis of lung cancer chemotherapy resistance”, Journal of Pharmaceutical and Biomedical Analysis, vol. 49, p. 806–810. DOI: 10.1016/j.jpba.2008.12.021.
  • Malmstadt, N., Yager, P., Hoffman, A. S., Stayton, P. S. 2003. “A smart microfluidic affinity chromatography matrix composed of poly (N-isopropylacrylamide)-coated beads”, Analytical Chemistry, vol. 75(13), p. 2943– 2949. DOI: 10.1021/ac034274r.
  • Kim, T. H., Lee, J. M., Ahrberg, C. D., Chung, B. G. 2018. “Development of the microfluidic device to regulate shear stress gradients”, BioChip Journal, vol. 12(4), p. 294-303. DOI: 10.1007/s13206-018-2407-9.
  • Yazdian Kashani, S., Keshavarz Moraveji, M., Bonakdar, S. 2021. “Computational and experimental studies of a cell-imprinted-based integrated microfluidic device for biomedical applications”. Scientific Reports, vol. 11: 12130, p. 1-17. DOI: 10.1038/s41598-021-91616-2.
  • Calamak, S., Ulubayram, K. 2019. “Controlled synthesis of multi-branched gold nanodendrites by dynamic microfluidic systems”, Journal of Material Science, vol. 54, p. 7541-7552. DOI: 10.1007/s10853-019-03403-0.
  • Barata, D., Spennati, G., Correia, C., Ribeiro, N., Harink, B., Blitterswijk, C.v., Habibovic, P., Rijt, S. v., 2017. “Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology”, Biomedical Microdevices, vol. 19: 81, p. 1-10. DOI: 10.1007/s10544-017-0222-z.
  • Rosa, P. M., Gopalakrishnan, N., Ibrahim, H., Haug, M., Halaas, Q. 2016. “The intercell dynamics of T cells and dendritic cells in a lymph node-on-a-chip flow device”, Lab on a Chip, vol. 19, p. 1-14. DOI: 10.1039/c6lc00702c.
  • Zimmerman, W. B. J. 2004. “COMSOL Process modeling and simulation with finite element methods”, World Scientific Publishing Co. Pte. Ltd.
  • Huang M., Fan, S., Xing, W., Liu, C. 2010. “Microfluidic cell culture system studies and computational fluid dynamics”, Mathematical and Computer Modelling, vol. 52, ıss. 11–12, p. 2036-2042. DOI: 10.1016/j.mcm.2010.01.024.
  • Hutmacher, D. W., Singh, H. 2008. “Computational fluid dynamics for improved bioreactor design and 3D culture”, Trends in Biotechnology, vol. 26, ıss. 4, p. 166-172. DOI: 10.1016/j.tibtech.2007.11.012.
  • Kleinstreuer, C. 2010. “Basic Theory and Selected Applications in Macro- and Micro-Fluidics”, Modern Fluid Dynamics, Springer Netherlands, XVIII, 622, e-book ISBN: 978-1-4020-8670-0, 1.
  • Wong, J. F., Simmons, C.A., Young, E. W. K. 2017. “Modeling and Measurement of Biomolecular Transport and Sensing in Microfluidic Cell Culture and Analysis Systems”, Modeling of Microscale Transport in Biological Processes, Elseiver Inc, p. 41-75.
  • Nguyen, N. T., Wereley, S. T. 2002. “Fundamentals and applications of microfluidics”, British Library Cataloguing in Publication Data, Artech House, Inc.
  • Byun, C. K., Abi-Samra, K., Cho, Y. K., Takayama, S. 2014. “Pumps for microfluidic cell culture”, Electrophoresis, vol. 35, p. 245–257. DOI: 10.1002/elps.201300205.
  • Inamdar, N. K., Griffith, L. G., Borenstein, J. T. 2011. “Transport and shear in a microfluidic membrane bilayer device for cell culture”, Biomicrofluidics, vol. 5, p. 022213. DOI: 10.1063/1.3576925.
  • Stone, S. D., Hollins, B. C. 2013. “Modeling Shear Stress in Microfluidic Channels for Cellular Applications”, 2013 29th Southern Biomedical Engineering Conference, p. 117-118. DOI: 10.1109/SBEC.2013.67.
  • Glossop, J. R., Cartmell, S. H. 2009. “Effect of fluid flow-induced shear stress on human mesenchymal stem cells: Differential gene expression of IL1B and MAP3K8 in MAPK signaling”, Gene Expression Patterns, vol. 9(5), p. 381-388. DOI: 10.1016/j.gep.2009.01.001.
  • Kreke, M. R., Goldstein, A. S. 2004. “Hydrodynamic Shear Stimulates Osteocalcin Expression But Not Proliferation of Bone Marrow Stromal Cells”, Tissue Engineering, vol. 10, p. 5-6. DOI: 10.1089/1076327041348455.
  • Leclerc, E., David, B., Griscom, L., Lepioufle, B., Fujii, T., Layrolle, P., Legallaisa, C. 2006. “Study of osteoblastic cells in a microfluidic environment”, Biomaterials, vol. 27, ıss. 4, p. 586-595. DOI: 10.1016/j.biomaterials.2005.06.002.
  • Leclerc, E., Kirat, K. E., Griscom, L. 2008. “In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips”, Biomedical Microdevices, vol. 10, p. 169–177. DOI: 10.1007/s10544-007-9122-y.
  • Hung, P. J., Lee, P. J., Sabounchi, P., Aghdam, N., Lin, R., Lee, L. P. 2005. “A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array”, Lab on a Chip, vol. 5, p. 44-48. DOI: 10.1039/b410743h.
  • Brown, A., Meenan, B. J. 2007. “Investigating the Effects of Fluid Shear Forces on Cellular Responses to Profiled Surfaces in-vitro: A Computational and Experimental Investigation”, Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale, Lyon, France August 23-26, 2007. DOI: 10.1109/IEMBS.2007.4353560.
  • Maguıre, T., Usta, O. B., Yarmush, M. L. 2011. “Computational Fluid Dynamic Analysis of a Cell-based Microfluidic Drug Screening Platform”, Nano Life, vol. 01, p. 03n04. DOI: 10.1142/S1793984410000201.
  • Tourlomousis, F., Chang, R. C. 2014. “Computational Modeling of 3D Printed Tissue-on-a-Chip Microfluidic Devices as Drug Screening Platforms”, ASME 2014 International Mechanical Engineering Congress and Exposition, Vol. 3: Biomedical and Biotechnology Engineering, IMECE2014-38454, V003T03A038; 9 pages, ISBN: 978-0-7918-4646-9. DOI: 10.1115/IMECE2014-38454.
  • Tourlomousis, F., Chang, R. C. 2015. “2D and 3D Multiscale Computational Modeling of Dynamic Microorgan Devices as Drug Screening Platforms”, ASME 2015 International Mechanical Engineering Congress and Exposition, Vol. 3: Biomedical and Biotechnology Engineering, IMECE2015-52734, V003T03A051; 10 pages, ISBN: 978-0-7918-5738-0. DOI: 10.1115/IMECE2015-52734.
  • Kohl, Y., Biehl, M., Spring, S., Hesler, M., Ogourtsov, V., Todorovic, M., Owen, J., Elje, E., Kopecka, K.,Moriones, O. H., Bastús, N. G., Simon, P., Dubaj, T., Rundén-Pran, E., Puntes, V., William, N., von Briesen, H., Wagner, S., Kapur, N., Mariussen, E., Nelson, A., Gabelova, A., Dusinska, M., Velten, T., Knoll, T. 2021, “Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening”, Small, vol. 17, 2006012, p. 1-15. DOI: 10.1002/smll.202006012.
  • Ahmed, F., Yoshida, Y., Wang, J., Sakai, K., Kiwa, T. 2021. “Design and validation of microfluidic parameters of a microfluidic chip using fluid dynamics”, AIP Advances, vol. 11, ıss. 7, p. 075224. DOI: 10.1063/5.0056597.
Mühendis ve Makina-Cover
  • ISSN: 1300-3402
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1957
  • Yayıncı: TMMOB MAKİNA MÜHENDİSLERİ ODASI