Elektromekanik supap mekanizmalarının tasarımı ve kam milinden tahrikli supap mekanizmaları ile karşılaştırılması

Elektromekanik supap mekanizmaları benzinli motorlarda kullanılan yeni bir teknolojidir. Supap zamanlaması kam milinden tahrikli mekanik supap mekanizmalarında kam profiline bağlı iken elektromekanik supap mekanizmalarında kam profilinden bağımsızdır. Elektromekanik supap mekanizmalarında supap mıknatıs devreleri yardımıyla açılıp kapandığından supap zamanlaması motor çalışma şartlarına göre ayarlanabilir ve bu şekilde esnek supap zamanlaması ile motorun tüm çalışma şartlarında motor performansı iyileştirilebilir. Bu çalışmada disk tipi mıknatıs devresinin elektromekanik supap mekanizmalarına uygulanabilirliği araştırılmıştır. Disk tipi mıknatıs devresi kullanılarak yapılı ve tolerans aralığı geniş iki tür elektromekanik supap mekanizması tasarlanmış ve imal edilmiştir. Her iki sistemin dinamik karakteristikleri teorik ve deneysel olarak elde edilmiştir. Tasarımı ve imalatı gerçeklenen elektromekanik supap mekanizmasının supap hareket profili mekanik supap mekanizmasının hareket profili ile karşılaştırılmış ve ideal ve gerçek çalışma-koşulları için iyi bir uyum elde edilmiştir.

Electromechanical valve actuators are new technology devices used in gasoline engines. Although valve timing of camshaft driven mechanical system is related to cam profile, valve timing of electromechanical valve actuators is independent of cam profile. Because the valve is opened and closed by magnetic circuits in electromechanical valve actuators, valve timing can be adjusted according to engine operating conditions and so, engine performance can be improved via flexibility in valve timings at all engine operating conditions. In this study, the applicability of disc type of electromagnet is investigated in electromechanical valve actuators. Two type of electromechanical valve actuators using disc type of magnetic circuits are designed and manufactured. Dynamic characteristics of two systems are obtained theoretically and experimentally. The valve profiles of designed and manufactured electromechanical valve actuators are compared with the valve profile of mechanical valve actuation system and a good agreement between two systems is obtained for ideal and real conditions.

___

1. Kutlar, O. A., H. Arslan, A.T. Çalık. 1999. Benzin (Otto) Motorunda Kısmi Yükte Yakıt Tüketimini Azaltmaya Yönelik Yöntemler: Değişken Supap Zamanlaması ve Açılma Miktarı, Değişken Sıkıştırma Oranı. Mühendis ve Makine Dergisi, 477:44-52.

2. Pischinger M, Salber W, Staay FVD, Baumgarten H, Kemper H. Benefits of the Electromechanical Valve Train in Vehicle Operation. Variable Valve Actuation, 2000,43-53.

3. http://www.fev.com/f_index.html (Electromechanical valve control)

4. Giglio V, lorio B, Police G, Gaeta A. Analysis of Advantages and of Problems of Electromechanical Valve Actuators. Variable Valve Actuation, 2002, SAE 2002-01-1105.

5. Wang, Y., A. Stefanopoulou, M. Haghgooie, I. Kolmanovsky, M. Hammond. Modeling of an Electromechanical Valve Actuator for a Camless Engine. Proceedings AVEC, 2000,5 th Int. Symposium on Advanced Vehicle Control, 93; 2000. (Http://ghost.engin.umich.edu/pubs.html)

6. Park, S. H., J. Lee,. J. Yoo, D. Kim, K. Park, Y. Cho. A Developing Process of Newly Developed Electromagnetic Valve Actuator - Effect of Design and Operating Parameters. SAE, 2001.02FFL-93.

7. Park SH, Lee J, Yoo J, Kim D. A, Study on the Design of Electromagnetic Valve Actuator for WT Engine. KSME International Journal, 2003,17,357-369.

8. Park SH, Lee J, Yoo J, Kim D, Park K. Effects of design and Operating Parameters on the Static and Dynamic Performance of an Electromagnetic Valve Actuator. Journal of Automobile Engineering, 2003,217,193-201.

9. Nitu C, Gramescu B, Nitu S. Application of Electromagnetic Actuators to a Variable Distribution System for Automobile Engines. Journal of Materials Processing Technology, 2005,161, 253-257.

10. Chang WS, Parlikar TA, Seeman MD, Perreault DJ, Kassakian JG, Keim TA. A new Electromagnetic Valve Actuator. Power Electronics in Transportation, 2002,109-118.

11. Clark, R. E., G. W. Jewell, S. J. Forrest, J. Rens, C. Maerky. Design Features for Enhancing the Performance of Electromagnetic Valve Actuation Systems. IEEE Transactions on Magnetics, 2005,41 (3), 1163-1168.

12. Chladny R.R., C. R. Koch, A. E Lynch. Modeling Automotive Gas-Exchange Solenoid Valve Actuators. IEEE Transactions on Magnetics, 2005,41 (3), 1155-1162.

13. Kamış, K. Supaplar İçin Elektromekanik Eyleyici Tasarımı-ve Denetiminin Araştırılması. Doktora Tezi, Uludağ University, Turkey; 2005.

14. Wang Y, Megli T, Haghgooie M. Modeling and control of Electromechanical Valve Actuator. Variable Valve Actuation, 2002, SAE. 2002-01-1106.

15. Xiang JY. Modeling and Control of a Linear Electro-Mechanical Actuator (LEMA) for Operating Engine Valves. IEEE, 2002, 1943-1948.

16. Eyabi, P, B. Modeling and Sensorless Control of Solenoidal Actuators. PhD Thesis, The Ohio State University, Columbus, USA, 2003.

17. Peterson, K. S. Control Methodologies for Fast & Low Impact Electromagnetic Actuators for Engine Valves. PhD Thesis, The University of Michigan, USA, 2005.

18. Butzmann, S., J. Melbert, A. Koch, Sensorless Control of Electromagnetic Actuators for Variable Valve Train. Variable Valve Actuation 2000, SAE. 2000-01-1225: 65-70.

19. Montanari, M., F. Ronchi, C. Rossı. Trajectory Generation for Camless Internal Combustion Engine Valve Control. IEEE International Symposium on Industrial Electronics, 2003, 9-12 June 2003, Brazil, p. 454-459.

20. Tai, C., T. C. Tsao. Control of Electromechanical Actuator for Camless Engines. Proceedings of the American control Conference, 2003,4:3113-3118.

21. Stubbs, A. Modeling and Controller Design of an Electromagnetic Engine Valve. M.Sc. Thesis, University of Illinois, Urbana-Champaign, 2000.

22. Roters HC. Electromagnetic devices. John Wiley, USA, 1941

23. Gül Z. 1994. Prediction of In Cylinder Flow by Use of a MultipleTimeScale Turbulence Model. PhD Thesis, Victoria University of Manchester, England.