Akışkanlar: Mikro-akışkanlar modellemesinin kutsal kasesi

Geleneksel akışkanlar mekaniği, belirli benzerlik parametrelerinin - en önemle Reynolds sayısı - eşlendirilmesi durumunda, sıvı ve gaz akışları arasında bir fark olmadığını söyler. Bu durum, nano ve mikrocihazlardaki akışlar için geçerli olabilir de olmayabilir de. Alışılmış sürekli ortam, Navier-Stokes modellemesi; makrocihazlarda hem su hem de hava akışı için olağan olarak uygulanabilirdir. Hava ve su gibi yaygın akışkanlar için bile, bu modellemenin yeterince küçük ölçeklerde başarısız olacağı açıktır, fakat maddenin iki formu için bu başarısızlığın başlangıcı farklıdır. Aynı zamanda, kaymaz, yarı-dengeli Navier-Stokes sistemi artık uygulanabilir olmadığında ise gazlar ve sıvılar için alternatif modelleme şemaları değişik olmaktadır. Seyreltik gazlar için istatistiksel yöntemler uygulanmaktadır ve Boltzmann denklemi bu tarz yaklaşımların temelidir. Sıvı akışları için, maddenin yoğun doğası, gazların kinetik teorisinin kullanımını olanaksız kılmaktadır ve sayısal olarak kuvvetli olan moleküler dinamik benzetimler kökleri ilk prensiplere dayanan tek alternatiftir. Bu makale, mikroölçeklerde sıvı ve gaz aktarımı arasındaki farkları vurgulayarak yukarıda bahsi geçen konuları ve çok küçük cihazlarda sıvı akışına has fiziksel kavramları tartışmaktadır.

Liquids: The holy grail of microfluidic modeling

Traditional fluid mechanics edifies the indifference between liquid and gas flows as long as certain similarity parameters-most prominently the Reynolds number - are matched. This may or may not be the case for flows in nano- or microdevices. The customary continuum, Navier-Stokes modeling is ordinarily applicable for both air and water flowing in macrodevices. Even for common fluids such as air or water, such modeling is bound to fail at sufficiently small scales, but the onset for such failure is different for the two forms of matter. Moreover, when the no-slip, quasi-equilibrium Navier-Stokes system is no longer applicable, the alternative modeling schemes are different for gases and liquids. For dilute gases, statistical methods are applied and the Boltzmann equation is the cornerstone of such approaches. For liquid flows, the dense nature of the matter precludes the use of the kinetic theory of gases, and numerically intensive molecular dynamics simulations are the only alternative rooted in first principles. The present article discusses the above issues, emphasizing the differences between liquid and gas transport at the microscale and the physical phenomena unıque to liquid flows in minute devices.

___

  • 1.R.P. Feynman, "There's Plenty of Room at the Bottom," in Miniaturization, ed. H.D. Gilbert, pp. 282-296, New York: Reinhold Publishing, (1961).
  • 2.T.M. Squires, S.R. Quake, "Microfluidics: fluid physics at the nanoliterscale". Rev. Mod. Phys. 77 (3), July (2005).
  • 3.M.Gad -el-Hak, "The Fluid Mechanics of Microdevices- the Freeman Scholar Lecture". J. Fluids Eng. 121, 5-33 (1999).
  • 4.H.A. Stone, A.D. Stroock, A. Ajdari, "Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip". Annu. Rev. Fluid Mech. 36,381-411 (2004).
  • 5.M. Gad-el-Hak, Editor, The MEMS Handbook, Second Edition, Volumes I-III, Boca Raton: CRC Press, (2005).
  • 6.G. Em Karniadakis, A. Beskok, Microflows: Fundamentals and Simulation, New York: Springer-Verlag, (2002).
  • 7.G.K. Batchelor, An Introduction to Fluid Dynamics, London: Cambridge University Press, (1967).
  • 8.M.J. Lighthill, "Introduction. Real and Ideal Fuids," in Laminar Boundary Layers, ed. L. Rosenhead, pp. 1 -45. Oxford: Clarendon Press, (1963).
  • 9.S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases, third edition, London: Cambridge UniversityPress,(1970).
  • 10.G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford: Clarendon Press, 1994,
  • 11.M. Knudsen, "Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren". Annalen der Physik 28, 75-130(1909).
  • 12.S.A. Tison, "Experimental Data and Theoretical Modeling of Gas Flows Through Metal Capillary Leaks". Vacuum 44, 1171-1175(1993).
  • 13.A. Beskok, G.E. Karniadakis, W. Trimmer, "Rarefaction and Compressibility Effects in Gas microflows". J. Fluids Eng. 118,448-456(1996).
  • 14.R.H. Nadolink, W.W. Haigh, "Bibliography on Skin Friction Reduction With Polymers and Other Boundary-Layer Additives". Appl. Mech. Rev. 48,351 -459 (1995).
  • 15.W. Loose, S. Hess, "Rheology of Dense Fluids Via Nonequilibrium Molecular Hydrodynamics: Shear Thinning and ordering transition". Rheologica Acta 28,91 -101 (1989).
  • 16.E.B. Dussan, S.H. Davis, "On the Motion of Fluid-Fluid Interface Along a Solid Surface". J. Fluid Mech. 65,71 -95 (1974).
  • 17.E.B. Dussan, "The Moving Contact Line: The Slip Boundary Condition". J. Fluid Mech. 77,665-684 (1976).
  • 18.E.B. Dussan, "On the Spreading of Liquids on Solid Surfaces: Static and Dynamic Contact Lines". Annu. Rev. Fluid Mech. 11,371 -400 (1976).
  • 19.P.A. Thompson, M.O. Robbins, "Simulations of Contact Line Motion: Slip and the Dynamic Contact Angle". Phys. Rev. Lett. 63, 766-769 (1989),
  • 20.H.K. Moffatt, "Viscous and Resistive Eddies Near a Sharp Corner". J. Fluid Mech. 18,1 -18 (1964).
  • 21.J. Koplik, J.R. Banavar, "Continuum Deductions From Molecular Hydroynamics". Annu. Rev. Fluid Mech. 27, 257-292(1995).
  • 22.J.R.A. Pearson, C.J.S. Petrie, "On Melt Flow Instability of Extruded Polymers," in Polymer Systems: Deformation and Flow, eds. R.E. Wetton, R.W. Whorlow, pp. 163-187, London: Macmillian, (1968).
  • 23.S. Richardson, "On the No-Slip Boundary Condition". J. Fluid Mech. 59, 707-719 (1973).
  • 24.M.M. Den, "Issues in Viscoelastic Fluid Mechanics". Annu. Rev. Fluid Mech. 22,13-34 (1990).
  • 25.M.M. Den, "Extrusion Instabilities and WallSlip". Annu. Rev. Fluid Mech. 33,265-287 (2001).
  • 26.E. Lauga, M.P. Brenner, H.A. Stone, "Microfluidics: the No- Slip Boundary Condition", in Handbook of Experimental Fluid Dynamics, eds. J. Foss, C. Tropea, A. Yarin, Chapter 15, NewYork: Springer, (2005).
  • 27.J. Pfahler, J. Harley, H.H. Bau, J.N. Zemel, "Liquid Transport in Micron and Submicron Channels". Sensors & Actuators 21-23,431-434 (1990).
  • 28.J. Pfahler, J. Harley, H.H. Bau, J.N. Zemel, "Gas and Liquid Flow in Small Channels," in Symp. on Micromechanical Systems, Sensors, and Actuators, eds. D. Cho, R. Warrington, A. Pisano, H.H. Bau, C. Friedrich, J. Jara- Almonte, J. Liburdy, ASME DSC-Vol. 32, pp. 49-60, New York: ASME, (1991).
  • 29.J. Pfahler, "Liquid Transport in Micron and Submicron Size Channels," Ph.D. Thesis, University of Pennsylvania, Philadelphia, Pennsylvania, 1992.
  • 30.H.H. Bau, "Transport Processes Associated With Micro- Devices". Thermal Sci. Eng. 2,172-178 (1994).
  • 31.J.N. Israelachvili, "Measurement of the Viscosity of Liquids in Very Thin Films". J. Colloid Interface Sci. 110, 263-271 (1986).
  • 32.M.L. Gee, P.M. McGuiggan, J.N. Israelachvili, A.M. Homola, "Liquid to Solidlike Transitions of Molecularly Thin Films Under Shear". J. Chemical Phys. 93, 1895-1906 (1990).
  • 33.D.Y.C. Chan, R.G.Horn, "Drainage of Thin Liquid Films". J. Chemical Phys. 83,5311 -5324 (1985).
  • 34.N.R Migun,' P.P. Prokhorenko, "Measurement of the Viscosity of Polar Liquids in Microcapillaries". Colloid J. of the USSR 49, 894-897 (1987).
  • 35.R Debye, R.L. Cletand, "Flow of Liquid Hydrocarbons in Porous Vycor". J. Appl. Phys. 30,843-849 (1959).
  • 36.J.L. Anderson, J.A. Guinn, "Ionic Mobility in Microcapillaries". J. Chemical Phys. 27, 1208-1209 (1972).
  • 37.D.B. Tuckermann, R.F.W. Pease, "High-Performance Heat Sinking for VLSI". IEEE Electron Device Lett. EDL-2,126-129 (1981).
  • 38.D.B. Tuckermann, R.F.W. Pease, "Optimized Convective Cooling Using Micromachined Structures". J. Electrochemical Soc. 129, C98, March (1982).
  • 39.D.B. Tuckermann, "Heat Transfer Microstructures for integrated circuits," Ph.D. Thesis, Stanford University, Palo Alto, California, (1984).
  • 40.M.G. Guvenc, "V-Groove Capillary for low flow control and measurement," in Micromachining and Micropackaging of Transducers, eds. CD. Fung, P.W. Cheung, W.H. Ko. D.G. Fleming, pp. 215-223, Amsterdam: Elsevier, (1985).
  • 41.S. Nakagawa, S. Shoji, M. Esashi, "A Micro-Chemical Analyzing System Integrated on Silicon Chip," in Proc. IEEE: Micro Electro Mechanical Systems, Napa Valley, California, IEEE 90CH2832-4, New York: IEEE, (1990).
  • 42.K.V. Sharp, "Experimental Investigation of Liquid and Particle-laden Flows in Microtubes," Ph.D. Thesis, University of Illinois at Urbaria-Champaign, (2001).
  • 43.K.V. Sharp, R.J. Adrian, J.G. Santiago, J.I. Molho, "Liquid Flow in Microchannels," in The Handbook of MEMS, vol. I, Second Edition, ed. M. Gad-el-Hak, Chapter 10, Boca Raton: CRC Press, (2005).
  • 44.B.J. Alder, T.E. Wainwright, "Studies in Molecular Dynamics". J. Chemical Phys. 27,1208-1209 (1957).
  • 45.B.J. Alder, T.E. Wainwright, "Molecular Dynamics by Electronic Computers," in Transport Processes in Statistical Mechanics, ed, I. Prigogine, pp. 97-131, New York; Interscience, (1958).
  • 46.B.J. Alder, T.E. Wainwright, "Decay of the Velocity Auto- Correlation function". Phy. Rev.A1,18-21 (1970).
  • 47.G. Ciccotti, W.G. Hoover, eds, Molecular Dynamics Simulation of Statistical Mechanics Systems, Amsterdam: North Holland, (1986).
  • 48.M.R Alien, D.J. Tildesley, Computer Simulation of Liquids, Oxford: Clarendon Press, (1987).
  • 49.J.M. Haile, Molecular Dynamics Simulation: Elementary Methods, New York: Wiley, (1993).
  • 50.P.A. Thompson, S.M. Troian, "A General Boundary Condition For Liquid Flow at Solid Surfaces". Nature 389, 360-362(1997).
  • 51.C.L.M.H. Navier, "Memoire Sur Les Lois du Mouvement Des Fluides". Memoires de I'Academie Royale des Sciences de I'lnstitute de France 6,389 (1823).
  • 52.B.T. Atwood, W.R. Schowalfer, "Measurements of Slip at the Wall During Flow of High-density Polyethylene Through a Rectangular Conduit". Rheologica Acta 28, 134-146 (1989).
  • 53.F.F. Abraham, J.Q. Broughton, N. Bernstein, E. Kaxiras» "Spanning the Continuum to Quantum Length Scales in a Dynamic Simulation of Brittle Fracture". Europhys. Lett. 44, 783-787(1998).
  • 54.V.B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, M. Ortiz, "An Adaptive Finite Element Approach to Atomic-Scale Mechanics-The Quasicontinuum Method". J. Mech. Phys. Solids 47,611 -642 (1999).
  • 55.R.E. Rudd, J.Q. Broughton, "Concurrent Coupling of Length Scales in Solid State Systems", Phys. Status Solidi B 217,251-291(2000).
  • 56.D.C. Wadsworth, D.A. Erwin, "One-Dimensional Hybrid Continuum/Particle Simulation Approach for Rarefied Hypersonic Flows", AIM Paper Number 90-1690, (1990).
  • 57.D. Hash, H. Hassan, "A Decoupled DSMC/Navier-Stokes Analysis of a Transitional Flow Experiment", AIAA Paper Number 96-353,(1996).
  • 58.J. Bourgat, P. Le Tailec, M. Tidriri, "Coupling Boltzmann and Navier-Stokes Equations by Friction". J. Comput, Phys. 127,227-245(1996).
  • 59.B.J. Alder, "Highly Discretized Dynamics". Physica A 240, 193-195(1997).
  • 60.R Le Tallec, F. Matlinger, "Coupling Boltzmann and Javier-Stokes Equations by Half Fluxes". J. Comput. Phys. 136,51-67(1997).
  • 61.S. Tiwari, A. Klar, "Coupling of the Boltzmann and Euler Equations With Adaptive Domain Decomposition procedure". J. Comput. Phys. 144,710-726 (1998).
  • 62.A.L. Garcia, J. Bell, W.Y. Crutchfield, B.J. Alder, "Adaptive Mesh and Algorithm Refinement using Direct Simulation Monte Carlo". J. Comput. Phys. 154,134-155 (1999).
  • 63.O. Aktas, N.R. Aluru, "A Combined Continuum/DSMC Technique for Multiscale Analysis of Microfluidic Filters". J. Comput. Phys. 178,342-372 (2002).
  • 64.R. Roveda, D.B. Goldstein, P.L. Varghese, "Hybrid Euler/direct Simulation Monte Carlo Calculation of Unsteady slit flow". J. Spacecr. Rockets 37, 753-760 (2000).
  • 65. S.T. O'Connell, P.A. Thompson, "Molecular Dynamics-Continuum Hybrid Computations: a Tool for Studying Complex Fluid Flows". Phys. Rev. E 52, R5792-R5795 (1995).
  • 66. J. Li, D. Liao, S. Yips "Coupling Continuum to Molecular-Dynamics Simulation: Reflecting Particle Method and the Field Estimator". Phys. Rev. E 57, 7259-7267 (1998).
  • 67.N.G. Hadjiconstantinou, "Hybrid Atomistic-Continuum Formulations and the Moving Contact-Line Problem". J. Comput. Phys. 154,245-265 (1999).
  • 68.E.G. Flekkoy, G. Wagner, J. Feder, "Hybrid Model for Combined Particle and Continuum Dynamics". Europhys. Lett. 52, 271-276 (2000).
  • 69.H.S. Wijesinghe, N.G. Hadjiconstantinou, "Discussion of Hybrid Atomistic-continuum Methods for Multiscale Hydrodynamics". Int. J. Multiscale Comput. Eng. 2, 189-202(2004).
  • 70.H.S. Wijesinghe, R.D. Hornung, A.L Garcia, N.G. Hadjiconstantinou, "Three-Dimensional Hybrid Continuum-Atomistic Simulations for Multiscale Hydrodynamics". J. Fluids Eng. 126,768-777 (2004).
  • 71.T. Werder, J.H. Waither, P. Koumoutsakos, "Hybrid Atomistic-Continuum Method for the Simulation of Dense Fluid flows". J. Comput. Phys. 205,373-390 (2005).
  • 72.L.L. Baker, N.G. Hadjiconstantinou, "Variance Reduction for Monte Carlo Solutions of the Boltzmann Equation". Phys. Fluids, to appear (2005).
  • 73.E. Lauga, H.A. Stone, "Effective Slip in Pressure-Driven Stokes Flow". J. Fluid Mech. 489,55-77 (2003).
  • 74.F.W. Went, "The size of man". American Scientist 56, 400-413(1968).
  • 75.W.C. Tang, T.-C. Nguyen, R.T. Howe, "Laterally Driven Polysilicon Resonant Microstructures". Sensors & Actuators 20,25-32(1989).
  • 76.C. Mastrangelo, C.H. Hsu, "A Simple Experimental Technique for the Measurement of the Work of Adhesion of Microstructures," in Technical Digest IEEE Solid-State Sensors and Actuators Workshop, pp. 208-212. New York: IEEE, (1992).
  • 77.L.-S. Fan, Y.-C. Tai, R.S. Muller, "Integrated Movable Micromechanical Structures for Sensors and Actuators". IEEE Transactions on Electronic Devices 35, 724-730 (1988).
  • 78.L.-S. Fan, Y.-C. Tai, R.S. Muller, "IC-processed Electrostatic Micromotors". Sensors & Actuators 20,41 -47 (1989).
  • 79.Y.-C. Tai, R.S. Muller, "IC-processed Electrostatic Synchronous micromotors". Sensors & Actuators 20, 49-55(1989).
  • 80.S. Brunauer, Physical Adsorption of Gases and Vapours, London: Oxford University Press, (1944).
  • 81.A. Majumdar, i. Mezic, "Stability Regimes of Thin Liquid Films". MicroscaleThermophys. Eng. 2,203-213 (1998).
  • 82.A. Ntajumdar, I. Mezic, "Instability of Ultra-thin Water Films and the Mechanism of Droplet Formation on Hydrophilic Surfaces". J. Heat Transfer 121,964-9 71 (1999).
  • 83.J.N. Israelachvili, Intermolecular and Surface Forces, second edition, New York: Academic Press, (1991).
Mühendis ve Makina-Cover
  • ISSN: 1300-3402
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1957
  • Yayıncı: TMMOB MAKİNA MÜHENDİSLERİ ODASI