YAMUK KANAL İÇİNDEKİ HİBRİT NANOAKIŞKAN AKIŞININ ENERJİ, ENTROPİ VE EKSERJİ ANALİZİ

Bu çalışmada yamuk kesitli kanal içerisinde türbülanslı akış rejiminde (104

ENERGY, ENTROPY AND EXERGY ANALYSES OF HYBRID NANOFLUID FLOW IN A TRAPEZOIDAL CHANNEL

This study presents energy, entropy, and exergy analyses of Al2O3-Cu/water hybrid nanofluid flow in a trapezoidal crosssectioned channel under a turbulent regime (104

___

  • 1. Takabi, B. and Shokouhmand, H., “Effects of Al2O3-Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime,” Int. J. Mod. Phys. C, vol. 26, no. 4, p. 1550047, 2015.
  • 2. Selvakumar, P. and Suresh, S., “Use of Al2O3- Cu/water Hybrid Nanofluid in an Electronic Heat Sink,” IEEE Trans. Components, Packag. Manuf. Tech., vol. 2, no. 10, pp. 1600–1607, 2012.
  • 3. Suresh, S., Venkitaraj, K. P., Selvakumar, P., and Chandrasekar, M., "Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer", Experimental Thermal And Fluid Science, 38: 54–60 (2012).
  • 4. Suresh, S., Venkitaraj, K. P., Selvakumar, P., and Chandrasekar, M., "Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties", Colloids And Surfaces A: Physicochemical And Engineering Aspects, 388 (1–3): 41–48 (2011).
  • 5. Moghadassi, A., Ghomi, E., and Parvizian, F., "A numerical study of water based Al2O3 and Al2O3-Cu hybrid nanofluid effect on forced convective heat transfer", International Journal Of Thermal Sciences, 92: 50–57 (2015).
  • 6. Ahammed, N., Asirvatham, L. G., and Wongwises, S., "Entropy generation analysis of graphene– alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler", International Journal Of Heat And Mass Transfer, 103: 1084–1097 (2016).
  • 7. Moghaddami, M., Mohammadzade, A., and Esfehani, S. A. V., "Second law analysis of nanofluid flow", Energy Conversion And Management, 52 (2): 1397–1405 (2011).
  • 8. Singh, P. K., Ahmed, N. Z., Das, S. K. and Shatilla, Y., “Exergy Analysis of Nanofluids In Microchannel”, 9th International Conference on Nanochannels, Microchannels, and Minichannels (ICNMM2011), Alberta, Canada, pp. 1–9, June 19- 22, 2011.
  • 9. Bianco, V., Nardini, S. and Manca, O., “Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes,” Nanoscale Research Letters, vol. 6, no. 252, pp. 1– 12, 2011.
  • 10. Ji, Y., Zhang, H., Yang, X. and Shi, L., “Entropy Generation Analysis and Performance Evaluation of Turbulent Forced Convective Heat Transfer to Nanofluids,” Entropy, vol. 19, no. 108, pp. 1–18, 2017.
  • 11. Amirahmadi, S., Rashidi, S., and Abolfazli Esfahani, J., "Minimization of exergy losses in a trapezoidal duct with turbulator, roughness and beveled corners", Applied Thermal Engineering, 107: 533–543 (2016).
  • 12. London, W. M. K. and A. L., "Compact Heat Exchangers", McGraw-Hill, New York, USA, (1964).
  • 13. Dhariwal, S. M. F. and R. S., "Experimental and Numerical Investigation Into the Flow Characteristics of Channels Etched in silicon", Journal Of Fluids Engineering, 120: 291–295 (1998).
  • 14. Lee, S. W., "Heat Transfer Characteristics of a Two-Pass Trapezoidal Channel and a Novel Heat Pipe", Texas A&M University, (2007).
  • 15. Minea, A. A., “Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison,” Renewable and Sustainable Energy Reviews, vol. 71, pp. 426-434, 2017.
  • 16. "Fluent Theory Guide", Ansys Inc.
  • 17. B. E. Lauder and D. B. Spalding, "Lectures in Mathematical Models of Turbulence", Academic Press, London, UK, (1972).
  • 18. Namburu, P. K., Das, D. K., Tanguturi, K. M., and Vajjha, R. S., "Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties", International Journal Of Thermal Sciences, 48 (2): 290–302 (2009).
  • 19. Maxwell, J. C., "A Treastise on Electricity and Magnetism", 2nd ed. Ed., Oxford Univ. Press, Cambridge, USA, 440 (1881).
  • 20. Einstein, A., "Eineneuebestimmung der molekuldimensionen", Annals Of Physics, 324 (2): 289–306 (1906).
  • 21. Brinkman, H. C., "The viscosity of concentrated suspensions and solutions", The Journal Of Chemical Physics, 20 (4): 571 (1952).
  • 22. Batchelor, G. K., "The effect of Brownian motion on the bulk stress in a suspension of spherical particles", Journal Of Fluid Mechanics, 83 (1): 97–117 (1977).
  • 23. Lide, D. R. and Frederikse, H. P. R., "CRC Handbook of Chemistry and Physics 1997- 1998", Chemical Rubber Company, 78: (1997).
  • 24. Yang, C., Wu, X., Zheng, Y., and Qiu, T., "Heat transfer performance assessment of hybrid nanofluids in a parallel channel under identical pumping power", Chemical Engineering Science, 168: 67–77 (2017).
  • 25. A. Bejan, "Entropy Generation Minimization", CRC Press, Boca Raton, NY, (1996).
  • 26. Cengel, Y. and Boles, M., "Thermodynamics: An Engineering Approach", 8th Edition. Ed., McGraw-Hill Education, (2014).