SENTEZ PARAMETRELERİNİN La1-xCaxMnyAl1-y (LCMA) KRİSTAL YAPISINA ETKİS

Yeşil enerji uygulamaları için hidrojen çok önemli bir yere sahiptir. Yenilenebilir enerji kaynaklarına dayalı hidrojen üretimi bu bağlamda kritik bir role sahiptir. Güneş enerjisine dayalı termokimyasal yöntemler, sürdürülebilir bir şekilde hidrojen üretimi için dikkat çekmektedir. İki aşamalı termokimyasal su ayırma (TSA) yöntemi ile saflaştırmaya gerek kalmadan hidrojen üretmek mümkündür. Redoks reaksiyonlarının termodinamiği ve kinetiği, hidrojen üretim verimini belirleyen önemli faktörlerden biridir ve yapısal kararlılık TSA redoks reaksiyonları için çok önemlidir. Hidrojen üretim verimliliği, redoks reaksiyonlarda kullanılan aktif malzemelerin yapısal özelliklerinden önemli bir şekilde etkilenmektedir. Bu bakımdan perovskit oksitler, kompozisyon çeşitliliği ile birlikte üstün yapısal kararlılıkları nedeniyle TWS reaksiyonlarında kullanılabilen aktif bir malzeme olarak dikkat çekmektedir. Bu çalışmada sentez parametrelerinin TWS ile yüksek hidrojen üretebilme kapasitesine sahip olan La0.4Ca0.6Mn0.6Al0.4O3 (LCMA4664) ve La0.2Ca0.8Mn0.8Al0.2O3 (LCMA2882) perovskit tipi oksitlerin yapısal özellikleri üzerine etkisinin araştırılması amaçlanmıştır. LCMA oksit ailesindeki farklı stokiyometrinin sentez parametreleri ile birlikte ortaya çıkan kristal yapı üzerinde etkisi olduğu bulunmuştur.

EFFECT of SYNTHESIS PARAMETERS on the CRYSTAL STRUCTURE of La1-xCaxMnyAl1-y (LCMA)

Hydrogen is an essential substance for green-energy applications. The production of hydrogen-based on renewableenergy sources has a critical role in this context. Thermochemical methods based on solar energy are getting attention forhydrogen production in a sustainable manner. It is possible to produce hydrogen without the need of purification via twostep thermochemical water splitting (TWS) method. The thermodynamics and kinetics of redox reactions in activematerials used are the important factors for determining the hydrogen production efficiency. The structural stability isanother concern in the TWS reactions. The efficiency is strongly influenced by the structural properties of active materialsused in these reactions. In this regard, perovskite-oxides draw attention as an active material that can be used in TWSreactions due to their superior structural stability together with their compositional diversity. In this study, it was aimedto investigate the effect of synthesis parameters on the structural properties of La0.4Ca0.6Mn0.6Al0.4O3 (LCMA4664) andLa0.2Ca0.8Mn0.8Al0.2O3 (LCMA2882) perovskite-type oxides that offer high hydrogen production efficiency by TWS. It wasfound that different stoichiometry in LCMA oxide family has an effect on the resulting crystal structure together with thesynthesis parameters.

___

  • [1] U. Bossel and B. Eliasson, “Energy and the Hydrogen Economy,” ABB Switz. Ltd, pp. 1–35, 2009.
  • [2] J. M. Ogden, “Prospects for Building a Hydrogen Energy Infrastructure,” Annu. Rev. Energy Environ., vol. 24, no. 1, pp. 227–279, 1999.
  • [3] L. Ager-Wick Ellingsen et al., “Nanotechnology for environmentally sustainable electromobility Life-cycle assessment of EVs,” Nat. Publ. Gr., vol. 11, no. 12, pp. 1039–1051, 2016.
  • [4] T. M. Nenoff, R. J. Spontak, and C. M. Aberg, “Membranes for Hydrogen Purification: An Important Step toward a Hydrogen-Based Economy,” MRS Bull., vol. 31, no. 10, pp. 735– 744, 2006.
  • [5] J. G. Xu and G. F. Froment, “Methane Steam Reforming, Methanation and Water-Gas Shift .1. Intrinsic Kinetics,” Aiche J., vol. 35, no. 1, pp. 88– 96, 1989.
  • [6] N. S. Lewis and D. G. Nocera, “Powering the planet: Chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci., vol. 103, no. 43, pp. 15729 LP – 15735, 2006.
  • [7] P. Nikolaidis and A. Poullikkas, “A comparative overview of hydrogen production processes,” Renew. Sustain. Energy Rev., vol. 67, pp. 597–611, 2017.
  • [8] N. P. Siegel, J. E. Miller, I. Ermanoski, R. B. Diver, and E. B. Stechel, “Factors Affecting the Efficiency of Solar Driven Metal Oxide Thermochemical Cycles,” Ind. Eng. Chem. Res., vol. 52, no. 9, pp. 3276–3286, 2013.
  • [9] M. Roeb et al., “Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review,” Materials (Basel)., vol. 5, no. 11, pp. 2015–2054, 2012.
  • [10] J. R. Scheffe and A. Steinfeld, “Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: a review,” Mater. Today, vol. 17, no. 7, pp. 341–348, 2014.
  • [11] Z. Zhao, M. Uddi, N. Tsvetkov, B. Yildiz, and A. F. Ghoniem, “Redox Kinetics Study of Fuel Reduced Ceria for Chemical-Looping Water Splitting,” J. Phys. Chem. C, vol. 120, no. 30, pp. 16271–16289, 2016.
  • [12] Y. Sugiyama, N. Gokon, H. Cho, S. Bellan, and T. Hatamachi, “Thermochemical Two-Step WaterSplitting Using Perovskite,” pp. 1–6, 2017.
  • [13] A. Steinfeld, “Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions,” Int. J. Hydrogen Energy, vol. 27, no. 6, pp. 611–619, 2002.
  • [14] A. A. Emery, J. E. Saal, S. Kirklin, V. I. Hegde, and C. Wolverton, “High-Throughput Computational Screening of Perovskites for Thermochemical Water Splitting Applications,” Chem. Mater., vol. 28, no. 16, pp. 5621–5634, 2016.
  • [15] C. N. R. Rao and S. Dey, “Solar thermochemical splitting of water to generate hydrogen,” Proc. Natl. Acad. Sci., vol. 2017, p. 201700104, 2017.
  • [16] A. H. McDaniel et al., “Nonstoichiometric perovskite oxides for solar thermochemical H2and CO production,” Energy Procedia, vol. 49, no. December 2014, pp. 2009–2018, 2013.
  • [17] J. E. Miller, A. Ambrosini, E. N. Coker, M. D. Allendorf, and A. H. McDaniel, “Advancing oxide materials for thermochemical production of solar fuels,” Energy Procedia, vol. 49, pp. 2019– 2026, 2013.
  • [18] J. R. Scheffe, D. Weibel, and A. Steinfeld, “Lanthanum-strontium-manganese perovskites as redox materials for solar thermochemical splitting of H2O and CO2,” in Energy and Fuels, 2013.
  • [19] C.-K. Yang, Y. Yamazaki, A. Aydin, and S. M. Haile, “Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting,” J. Mater. Chem. A, vol. 2, no. 33, pp. 13612–13623, 2014.
  • [20] A. Demont and S. Abanades, “Solar thermochemical conversion of CO2 into fuel via two-step redox cycling of non-stoichiometric Mn-containing perovskite oxides,” J. Mater. Chem. A, 2015.
  • [21] D. Sastre, A. J. Carrillo, D. P. Serrano, P. Pizarro, and J. M. Coronado, “Exploring the Redox Behavior of La0.6Sr0.4Mn1−xAlxO3 Perovskites for CO2-Splitting in Thermochemical Cycles,” Top. Catal., vol. 60, no. 15–16, pp. 1108–1118, Sep. 2017.
  • [22] M. P. Pechini, “Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor.” US Patent Office, 1967.
  • [23] A. M. Kamarul Bahrain, S. Ida, and T. Ishihara, “Al-doped La0.5Sr0.5MnO3 as oxide anode for solid oxide fuel cells using dry C3H8 fuel,” J. Solid State Electrochem., vol. 21, no. 1, pp. 161–170, 2017.
  • [24] L. Wang et al., “Ca 2+ and Ga 3+ doped LaMnO 3 perovskite as a highly efficient and stable catalyst for two-step thermochemical water splitting,” Sustain. Energy Fuels, vol. 1, no. 5, pp. 1013–1017, 2017.