IRAK’TA PARABOLİK OLUK TİPİ GÜNEŞ KOLLEKTÖRLÜ HİBRİT BUHAR SANTRALİNİN TERMODİNAMİK ANALİZİ VE SİMÜLASYONU

Pek çok ülkede elektrik üretimi çevre için zararlı olmalarına rağmen, büyük oranda fosil yakıtla çalışan termik santrallarla yapılmaktadır.  Güneş enerjisinin bu halihazırdaki termik santrallarla entege edilmesi sureti ile hibrit şeklilde enerji üretimi birçok açıdan oldukça akılcı ve ekonomiktir. Bu çalışmada parabolik oluk tipi güneş kollektörlü hibrit buhar santralinin termodinamik analizi yapılmıştır. Tasarım süreci, solar kollektörlerde kullanılacak sıvının seçimini, kollektör sahasının ölçüleri ve kullanılacak kollektör sayısının tayinini, kollektör ve buhar santralını bağlayan ısı eşanjörünün ön tasarımını ve son olarak da hibrit sistemin termal analizini içermektedir. Nümerik modelin doğrulanmasının ardından buhar santralı ve hibrit santralın simülasyonları yapılmış, güç artışı, verim iyileşmesi, yakıt tasarrufu ve çevresel etkiler incelenmiştir. Ayrıca güneş kollektörü sahasında üretilebilecek ekstra enerji miktarları hesaplanmış ve faydalı enerji, ısı kaybı faktörü, solar akışkan sıcaklıkları, cam ve soğurucu boru sıcaklıkları hesaplanmış ve birbirleri ile kıyaslanmıştır. Son olarak basit ekonomik analiz yapılmış, seviyelendirilmiş enerji maliyeti (LCOE) hesaplanmış ve hibrit santralın ekonomik açıdan da avantajlı olduğuna dikkat çekilmiştir. Çalışma, hibrit sistemin daha güvenilir, daha yüksek verimli olduğuna dikkat çekmektedir. Verim artışı, güç artışı, yakıt tasarrufu ve azalan su kullanımı miktarları hesaplanmış ve farklı durumlar için birbiri ile kıyaslanmıştır. Güneş sahasının santrala entegrasyonun da bu parametreler üstünde oldukça önemli bir rol oynadığı ispatlanmıştır.

THERMODYNAMIC ANALYSIS AND SIMULATION OF STEAM TURBINE POWER PLANT HYBRID WITH PARABOLIC TROUGH COLLECTORS; A STUDY IN IRAQ

Fossil fuel thermal power plants are major investments for electricity production despite of their environmental drawbacks. Using solar energy in a hybrid manner with these power plants a sensible and an economical choice for advanced power generation.  In this study, thermodynamic analysis and simulation of a steam turbine power plant hybrid with parabolic trough solar collector field is done. Design process includes selection of heat transfer fluid (HTF), determination of the required solar power, orientation and sizing of the solar field, preliminary design of the solar heat exchanger (HEX) and thermodynamic analysis of the hybrid plant. After verification of computational model, simulations of steam power plant and hybrid power plant are done and results for increasing output electricity and saving fuel oil are studied considering the efficiency improvement and the environmental effects. Important solar field parameters like HTF, glass and absorber temperatures, heat loss coefficients and output power of the collector field are simulated and discussed. Finally, a simple economic analysis is done using levelized cost of energy method (LCOE) which showed that hybridization is economically sound.  The study also suggests that, hybridization is a sensible choice for increasing efficiency and output power, decreasing use of fossil fuels, thus environment problems. The orientation of the hybrid connection plays an important role on these parameters.

___

  • The International Energy Outlook [IEO], U.S. Department of Energy, Washington, 2016. Retrieved December 3, from http://large.stanford.edu/courses/2010/ph240/riley2/docs/EIA-0484-2010.pdf.
  • Bakos,G.,C. and Tsechelidou, C. “Solar aided power generation of a 300 MW lignite fired power plant combined with line-focus parabolic trough collectors field”, Renewable Energy, 60, 540-547, 2013
  • Zhao,Y., Hong, H. and Jin, H., “Optimization of the solar field size for the solar–coal hybrid system”, Applied Energy, 185, 1162-1172, 2017
  • Sargent, Lundy, “Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts”. NREL-report, Colorado, USA. Retrieved September 14 2003, from https://www.nrel.gov/docs/fy04osti/34440.pdf.
  • Chandra, L.,and Dixit, A., Concentrated Solar Thermal Energy Technology, Springer Nature Singapore Pte Ltd., 2018
  • Kalogirou, S., A., Solar Energy Engineering (processes and systems), Elsevier Inc., 2009
  • Peng, S., Hong, H., Jin, H., Zhang, Z., “A new rotatable-axis tracking solar parabolic-trough collector for solar-hybrid coal-fired power plants”, Solar Energy, 98, 492–502, 2013
  • Goswami, D., Y., and Kreith, F., Energy Conversion, CRC press, USA, 2008
  • Kakaç, S., Liu, H., Pramuanjaroenkij, A. Heat Exchanger Selection, Rating, and Thermal Design, third edition. CRC Press, 2012
  • Li, J., Yu, X., Wang, J., & Huang, S. “Coupling performance analysis of a solar aided coal-fired power plant”, Applied Thermal Engineering, 106, 613–624, 2016
  • Padilla, R., V., “Simplified Methodology for Designing Parabolic Trough Solar Power Plants”. PhD. Dissertation submitted to University of South Florida, retrieved December 14, 2017, from https://scholarcommons.usf.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=4585&context=etd
  • El-Wakil, M., M., Power Plant Technology, University of Wisconsin, McGraw-Hill Inc., 1984
  • Moran, M., J., & Shapiro, H., N., Fundamentals of Engineering Thermodynamics, 5th Edition, John Wiley and Sons Ltd, England, 2004
  • Al-Attwani, A., H., S., Thermodynamic analysis and simulation of parabolic trough solar collector hybrid steam turbine power plant, MSc Thesis Submitted to Çankaya University, Mechanical Eng. Dept., 2017
  • Duffie, J., A., Beckman, W., A., Solar Engineering of Thermal Processes, Fourth Edition. John Wiley & Sons, Inc., 2013
  • Online meteorological data in Iraq, Retrieved December 1, 2017, from http://www.agromet.gov.iq/index.php?name=Pages&op=page&pid=157.
  • Men, W., Optical and thermal modeling of parabolic trough concentrator systems, ‘PhD dissertation submitted to ETH ZURICH’, retrieved December 1, 2017, from http://doi.org/10.3929/ethz-a-010120400
  • Lovegrove, K., and Stein, W., Concentrating solar power technology, principle, Woodhead, 2012
  • Incropera, F., P., Dewitt, D., P., Therodore, and Bergman, T., L., Lavine, A., S, Fundamentals of Heat and Mass Transfer, 5th edition , WILY& Sons, Inc., 2013
  • American Society of Mechanical Engineers (ASME), ASME B31.1-2002, American National Standard, ASME Code for Pressure Piping,2004
  • Standards of the Tubular Exchanger Manufactures Association, TEMA Standards, 2017
  • Blair, N., Mehos, M., and Christensen, Sensitivity of Concentrating Solar Power trough performance, cost, and financing with the Solar Advisor Model. Tech. Rep. NREL/CD-550-42709, NREL, 2008.