CORRELATIONS BETWEEN NETWORK VULNERABILITY AND LAPLACIAN ENERGIES

In the network analysis, vulnerability plays key role. Similarly, Laplacian matrices are also effective tools in network analysis. In this study, we examine correlations between those two concepts. We first calculate the well-known vulnerability measures called edge connectivity, vertex connectivity, and solitude number. Then, we find correlation between vulnerability measures and energies of Laplacian matrices. As a result, we find strong correlations between Laplacian energies and vertex connectivity of a network.

AĞ KIRILGANLIĞI VE LAPLASYEN ENERJİLER ARASINDAKİ KORELASYONLAR

Ağ analizinde kırılganlık kavramı önemli rol oynamaktadır. Benzer şekilde, Laplasyen matrisleri de ağ analizinde etkili araçlardır. Bu çalışmada, bu iki kavram arasındaki korelasyon incelenmiştir. İlk olarak, oldukça çok bilinen ayrıt bağlantılık, tepe bağlantılık ve yalnızlık sayıları hesaplanmıştır. Daha sonra, bu kırılganlık ölçüleri ile Laplasyen matrislerinin enerjileri arasındaki korelasyon hesaplanmıştır. Sonuç olarak, bir ağın Laplasyen enerjileri ile tepe bağlantılık ölçüsü arasında güçlü korelasyonlar bulunmuştur.

___

[1] Holme, P., Kim, B. J., Yoon, C. N. and Han, S. K. “Attack vulnerability of complex networks”. Physical review E, 65(5), 056109. 2002

[2] Durgun, D. D. and Bagarathan A. “On the average covering number of pyramid and circular ladder graphs”. Advanced Mathematical Models & Applications. 3(3), 206-210, 2018

[3] Durgun, D. D. and Lökçü, B. “Strong domination number of some graphs”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 11(2), 2015

[4] Doğan, D. “Average lower domination number of some graphs”. International Journal of Mathematical Combinatorics. 4, 58-67, 2012

[5] Durgun, D. D. and Bagatarhan, A. “Average covering number for some graphs”. RAIRO-Operations Research, 53(1), 261-268, 2019

[6] Ammann, P., Wijesekera, D. and Kaushik, S. “Scalable, graph-based network vulnerability analysis”. In Proceedings of the 9th ACM Conference on Computer and Communications Security (pp. 217-224). ACM., 2002

[7] Gutman, I. 1The energy of a graph: old and new results1. In Algebraic combinatorics and applications (pp. 196-211). Springer, Berlin, Heidelberg, 2001

[8] Hoffmann, R. “An extended Hückel theory. I. hydrocarbons”. The Journal of Chemical Physics, 39(6), 1397-1412, 1963

[9] Pirzada, S. and Ganie, H. A. “On the construction of Lequienergetic graphs”. AKCE International Journal of Graphs and Combinatorics, 12(2-3), 141-154, 2015

[10] Diestel, R. “Graph theory”. Graduate Texts in Math, 101, 2005

[11] Chvátal, V. “Tough graphs and hamiltonian circuits”. Discrete Mathematics, 5(3), 215-228, 1973

[12] Bagga, K. S., Beineke, L. W., Lipman, M. J. and Pippert, R. E. “Edge-integrity: a survey”. Discrete mathematics, 124(1-3), 3-12, 1994

[13] Guler, H., Dundar, P. and Balci, M. A. “Solitude number at graphs”. IJ Pure and Applied Mathematics, 66(3), 355-364, 2011

[14] Grone, R., Merris, R. and Sunder, V. S. “The Laplacian spectrum of a graph”. SIAM Journal on Matrix Analysis and Applications, 11(2), 218-238, 1990

[15] Das, K. C. and Mojallal, S. A. “Relation between energy and (signless) Laplacian energy of graphs”. MATCH Commun. Math. Comput. Chem, 74(2), 359-366, 2015

[16] Boley, D., Ranjan, G. and Zhang, Z. L. “Commute times for a directed graph using an asymmetric Laplacian”. Linear Algebra and its Applications, 435(2), 224-242, 2011