CHEMICAL SYNTHESIS OF Al AND Co DOPED LiNi6Mn2Fe2O2 (NMF) CATHODE MATERIAL

Al ve Co katkılı LiNixMnyFezO2 (NMF) sol-gel yöntemi kullanılarak sentezlenmiştir. Katkıların LiNixMnyFezO2 (NMF) katot malzemelerinin yapısal stabilitesi üzerindeki etkisi araştırılmıştır. Bu amaçla, tozlar, nitrat öncüllerinin sulu bir çözeltisi kullanılarak hazırlanmış ve 850 ° C'de 5 saatte kalsine edilmiştir. LiNixMnyFezO2 sisteminin kimyasal bileşimi 622 (Ni / Mn / Fe atomik oran) olarak seçilmiş başarıyla sentezlenmiştir. Elde edilen tozların kimyasal bileşimi enerji saçılım spektroskopisi ile kontrol edilmiştir. Tozların morfolojisi taramalı elektron mikroskobu kullanılarak incelenmiştir. Numunelerin kristal yapısı, X ışını kırınımı ve Rietveld analizi kullanılarak analiz edilmiş ve ortalama kristal büyüklüğü 60-70 nm arasında hesaplanmıştır. Co katkılı ve Al katkılı 622 katot malzemelerin tabakalı yapıya sahip olduğu [006] / [102] ve [108] / [110] difraksiyon çiftleri ile görülmüştür.

CHEMICAL SYNTHESIS OF Al AND Co DOPED LiNi6Mn2Fe2O2 (NMF) CATHODE MATERIAL

Al and Co doped LiNixMnyFezO2 (NMF) was synthesized using sol-gel method. The effect of dopants on the structural stability of LiNixMnyFezO2 (NMF) cathode material was investigated. For this purpose, the powder preparation was carried out using an aqueous solution of the nitrate precursors followed by calcination at 850 °C 5h. The chemical composition of LiNixMnyFezO2 base material was selected as 622 (Ni/Mn/Fe atomic ratio) and were successfully synthesized in layered form. Chemical composition of the obtained powders was determined by Energy dispersive spectroscopy. Scanning electron microscopy was applied to investigate the morphology of the powders. The crystal structure of the samples was analyzed using X-ray diffraction and Rietveld analysis. Average crystallite size from Rietveld refinement was calculated to be between 60-70 nm. Co-doped and Al-doped 622 cathode materials showed [006]/[102] and [108]/[110] doublets, which is the sign of layered structure with hexagonal ordering  

___

  • [1] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature. 414 (2001) 359–367. doi:10.1038/35104644.
  • [2] J.B. Goodenough, K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective, J. Am. Chem. Soc. (2013). doi:10.1021/ja3091438.
  • [3] J.B. Goodenough, Cathode materials: A personal perspective, J. Power Sources. 174 (2007) 996–1000. doi:10.1016/j.jpowsour.2007.06.217.
  • [4] C. Delmas, M. Ménétrier, L. Croguennec, I. Saadoune, A. Rougier, C. Pouillerie, G. Prado, M. Grüne, L. Fournès, An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties, Electrochim. Acta. 45 (1999) 243–253. doi:10.1016/S0013-4686(99)00208-X.
  • [5] M. Broussely, P. Biensan, B. Simon, Lithium insertion into host materials: the key to success for Li ion batteries, Electrochim. Acta. 45 (1999) 3–22. doi:10.1016/S0013-4686(99)00189-9.
  • [6] B.B. Ammundsen, J. Paulsen, Ammundsen2001.pdf, (2001) 943–956.
  • [7] R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, W. Jaegermann, Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches, Mater. Sci. Eng. B. 192 (2015) 3–25. doi:10.1016/j.mseb.2014.11.014.[8] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, ChemInform Abstract: Insertion Electrode Materials for Rechargeable Lithium Batteries, ChemInform. 29 (2010) no-no. doi:10.1002/chin.199837286.
  • [9] M.G.S.R. Thomas, W.I.F. David, J.B. Goodenough, P. Groves, Synthesis and structural characterization of the normal spinel Li[Ni2]O4, Mater. Res. Bull. 20 (1985) 1137–1146. doi:10.1016/0025-5408(85)90087-X.
  • [10] T.H. Kim, J.S. Park, S.K. Chang, S. Choi, J.H. Ryu, H.K. Song, The current move of lithium ion batteries towards the next phase, Adv. Energy Mater. 2 (2012) 860–872. doi:10.1002/aenm.201200028.
  • [11] B. Pişkin, C. Savaş Uygur, M.K. Aydınol, Mo doping of layered Li (NixMnyCo1-x-y-zMz)O2 cathode materials for lithium-ion batteries, Int. J. Energy Res. 42 (2018) 3888–3898. doi:10.1002/er.4121.
  • [12] B. Pişkin, M.K. Aydinol, Development and characterization of layered Li(NixMnyCo1−x−y)O2 cathode materials for lithium ion batteries, Int. J. Hydrogen Energy. 41 (2016) 9852–9859. doi:10.1016/j.ijhydene.2016.03.127.
  • [13] M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. Itoh, M. Okada, T. Mouri, Preparation of Li Mn Ni1−O2 as a cathode for lithium-ion batteries, J. Power Sources. 74 (1998) 46–53. doi:10.1016/S0378-7753(98)00011-1.
  • [14] S. Liu, L. Xiong, C. He, Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode, J. Power Sources. 261 (2014) 285–291. doi:10.1016/j.jpowsour.2014.03.083.
  • [15] H. Zheng, Q. Sun, G. Liu, X. Song, V.S. Battaglia, Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells, J. Power Sources. 207 (2012) 134–140. doi:10.1016/j.jpowsour.2012.01.122.
  • [16] B. Ebin, S. Gürmen, C. Arslan, G. Lindbergh, Electrochemical properties of nanocrystalline LiFe xMn 2-xO 4 (x = 0.2-1.0) cathode particles prepared by ultrasonic spray pyrolysis method, Electrochim. Acta. 76 (2012) 368–374. doi:10.1016/j.electacta.2012.05.052.
  • [17] K. Karthikeyan, S. Amaresh, G.W. Lee, V. Aravindan, H. Kim, K.S. Kang, W.S. Kim, Y.S. Lee, Electrochemical performance of cobalt free, Li1.2(Mn0.32Ni0.32Fe0.16)O2 cathodes for lithium batteries, Electrochim. Acta. 68 (2012) 246–253. doi:10.1016/j.electacta.2012.02.076.
  • [18] D. Uzun, M. Doğrusöz, M. Mazman, E. Biçer, E. Avci, T. Şener, T.C. Kaypmaz, R. Demir-Cakan, Effect of MnO2 coating on layered Li(Li0.1Ni0.3Mn0.5Fe0.1)O2 cathode material for Li-ion batteries, Solid State Ionics. 249–250 (2013) 171–176. doi:10.1016/j.ssi.2013.08.012.
  • [19] M. Tabuchi, Y. Nabeshima, K. Ado, M. Shikano, H. Kageyama, K. Tatsumi, Material design concept for Fe-substituted Li2MnO3-based positive electrodes, J. Power Sources. 174 (2007) 554–559. doi:10.1016/j.jpowsour.2007.06.247.
  • [20] T.R. Penki, D. Shanmughasundaram, B. Kishore, A. V. Jeyaseelan, A.K. Subramani, N. Munichandraiah, Composite of Li-Rich Mn, Ni and Fe Oxides as Positive Electrode Materials for Li-Ion Battery, J. Electrochem. Soc. 163 (2016) A1493–A1502. doi:10.1149/2.0121608jes.
  • [21] L. Liu, K. Sun, N. Zhang, T. Yang, Improvement of high-voltage cycling behavior of Li(Ni1/3Co1/3Mn1/3)O2 cathodes by Mg, Cr, and Al substitution, J. Solid State Electrochem. 13 (2009) 1381–1386. doi:10.1007/s10008-008-0695-z.
  • [22] Y. Li, Y. Li, S. Zhong, F. Li, J. Yang, E. Properties of Y-Doped LiNi, Synthesis and Electrochemical Properties of Y-Doped LiNi 1/3 Mn 1/3 Co 1/3 O 2 Cathode Materials for Li-Ion Battery, Integr. Ferroelectr. 127 (2011) 150–156. doi:10.1080/10584587.2011.575736.
  • [23] A. Büyükburç, M.K. Aydinol, Effect of Cr and Mo doping on the electrochemical properties of freeze-dried LiCoO2, Int. J. Mater. Res. 105 (2014) 983–991. doi:10.3139/146.111104.
  • [24] S.-H. NA, H.-S. KIM, S.-I. MOON, The effect of Si doping on the electrochemical characteristics of LiNiMnCoO, in: Solid State Ionics, WORLD SCIENTIFIC, 2004: pp. 619–627. doi:10.1142/9789812702586_0069.
  • [25] Y.-P. Zhang, E.-Q. Liang, J.-X. Wang, B.-J. Yu, C.-Y. Wang, M.-W. Li, Effect of Aluminum Doping on the Stability of Lithium-Rich Layered Oxide Li[Li 0.23 Ni 0.15 Mn 0.52 Al 0.10 ]O 2 as Cathode Material, Int. J. Electrochem. Sci. 12 (2017) 9051–9060. doi:10.20964/2017.10.62.
  • [26] C.C. Wang, Y.C. Lin, P.H. Chou, Mitigation of layer to spinel conversion of a lithium-rich layered oxide cathode by substitution of Al in a lithium ion battery, RSC Adv. 5 (2015) 68919–68928. doi:10.1039/c5ra11665a.
  • [27] K.A. Ngalam, J. Chernova, Synthesis , Structure and Electrochemical Studies of NaNi 0 . 4 Mn 0 . 2 Co 0 . 2 O 2 for Na-ion Battery Applications, 51 (2012) 6220.
  • [28] L. Lutterotti, M. Bortolotti, G. Ischia, I. Lonardelli, Rietveld Texture Analysis from Diffraction Images Rietveld texture analysis from diffraction images, (2007). doi:10.1524/zksu.2007.2007.suppl.
  • [29] C. Savaş Uygur, B. Pişkin, M.K. Aydinol, Synthesis of Lix(Ni0.80Co0.15Al0.05)O2 Cathodes with Deficient and Ex-cess Lithium Using Ultrasonic Sound Assisted Co-Precipitation Meth-od for Li-Ion Batteries, Bull. Mater. Sci. xx, No. x (2017). doi:10.1007/sxxxx-0xx-1xyz-8.
  • [30] A.K. Arof, Characteristics of LiMO2 (M=Co, Ni, Ni0.2Co0.8, Ni0.8Co0.2) powders prepared from solution of their acetates, J. Alloys Compd. 449 (2008) 288–291. doi:10.1016/j.jallcom.2005.12.129.