EFFECT of SYNTHESIS PARAMETERS on the CRYSTAL STRUCTURE of La1-xCaxMnyAl1-y (LCMA)

Hydrogen is an essential substance for green-energy applications. The production of hydrogen-based on renewable energy sources has a critical role in this context. Thermochemical methods based on solar energy are getting attention for hydrogen production in a sustainable manner. It is possible to produce hydrogen without the need of purification via two-step thermochemical water splitting (TWS) method. The thermodynamics and kinetics of redox reactions in active materials used are the important factors for determining the hydrogen production efficiency. The structural stability is another concern in the TWS reactions. The efficiency is strongly influenced by the structural properties of active materials used in these reactions. In this regard, perovskite-oxides draw attention as an active material that can be used in TWS reactions due to their superior structural stability together with their compositional diversity. In this study, it was aimed to investigate the effect of synthesis parameters on the structural properties of La0.4Ca0.6Mn0.6Al0.4O3 (LCMA4664) and La0.2Ca0.8Mn0.8Al0.2O3 (LCMA2882) perovskite-type oxides that offer high hydrogen production efficiency by TWS. It was found that different stoichiometry in LCMA oxide family has an effect on the resulting crystal structure together with the synthesis parameters.

___

  • [1] Bossel U, Eliasson B. Energy and the Hydrogen Economy. ABB Switz Ltd 2009:1–35. doi:10.1016/S1464-2859(03)00606-0.
  • [2] Ogden JM. Prospects for Building a Hydrogen Energy Infrastructure. Annu Rev Energy Environ 1999;24:227–79. doi:10.1146/annurev.energy.24.1.227.
  • [3] Ager-Wick Ellingsen L, Hung CR, Majeau-Bettez G, Singh B, Chen Z, Whittingham MS, et al. Nanotechnology for environmentally sustainable electromobility Life-cycle assessment of EVs. Nat Publ Gr 2016;11:1039–51. doi:10.1038/NNANO.2016.237.
  • [4] Nenoff TM, Spontak RJ, Aberg CM. Membranes for Hydrogen Purification: An Important Step toward a Hydrogen-Based Economy. MRS Bull 2006;31:735–44. doi:10.1557/mrs2006.186.
  • [5] Xu JG, Froment GF. Methane Steam Reforming, Methanation and Water-Gas Shift .1. Intrinsic Kinetics. Aiche J 1989;35:88–96. doi:10.1002/aic.690350109.
  • [6] Lewis NS, Nocera DG. Powering the planet: Chemical challenges in solar energy utilization. Proc Natl Acad Sci 2006;103:15729 LP – 15735.
  • [7] Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 2017;67:597–611. doi:10.1016/j.rser.2016.09.044.
  • [8] Siegel NP, Miller JE, Ermanoski I, Diver RB, Stechel EB. Factors Affecting the Efficiency of Solar Driven Metal Oxide Thermochemical Cycles. Ind Eng Chem Res 2013;52:3276–86. doi:10.1021/ie400193q.
  • [9] Roeb M, Neises M, Monnerie N, Call F, Simon H, Sattler C, et al. Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review. Materials (Basel) 2012;5:2015–54. doi:10.3390/ma5112015.
  • [10] Scheffe JR, Steinfeld A. Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: a review. Mater Today 2014;17:341–8. doi:10.1016/j.mattod.2014.04.025.
  • [11] Zhao Z, Uddi M, Tsvetkov N, Yildiz B, Ghoniem AF. Redox Kinetics Study of Fuel Reduced Ceria for Chemical-Looping Water Splitting. J Phys Chem C 2016;120:16271–89. doi:10.1021/acs.jpcc.6b01847.
  • [12] Sugiyama Y, Gokon N, Cho H, Bellan S, Hatamachi T. Thermochemical Two-Step Water-Splitting Using Perovskite 2017:1–6.
  • [13] Steinfeld A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrogen Energy 2002;27:611–9. doi:10.1016/S0360-3199(01)00177-X.
  • [14] Emery AA, Saal JE, Kirklin S, Hegde VI, Wolverton C. High-Throughput Computational Screening of Perovskites for Thermochemical Water Splitting Applications. Chem Mater 2016;28:5621–34. doi:10.1021/acs.chemmater.6b01182.
  • [15] Rao CNR, Dey S. Solar thermochemical splitting of water to generate hydrogen. Proc Natl Acad Sci 2017;2017:201700104. doi:10.1073/pnas.1700104114.
  • [16] McDaniel AH, Ambrosini A, Coker EN, Miller JE, Chueh WC, O’Hayre R, et al. Nonstoichiometric perovskite oxides for solar thermochemical H2and CO production. Energy Procedia 2013;49:2009–18. doi:10.1016/j.egypro.2014.03.213.
  • [17] Miller JE, Ambrosini A, Coker EN, Allendorf MD, McDaniel AH. Advancing oxide materials for thermochemical production of solar fuels. Energy Procedia 2013;49:2019–26. doi:10.1016/j.egypro.2014.03.214.
  • [18] Scheffe JR, Weibel D, Steinfeld A. Lanthanum-strontium-manganese perovskites as redox materials for solar thermochemical splitting of H2O and CO2. Energy and Fuels, 2013. doi:10.1021/ef301923h.
  • [19] Yang C-K, Yamazaki Y, Aydin A, Haile SM. Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting. J Mater Chem A 2014;2:13612–23. doi:10.1039/C4TA02694B.
  • [20] Demont A, Abanades S. Solar thermochemical conversion of CO2 into fuel via two-step redox cycling of non-stoichiometric Mn-containing perovskite oxides. J Mater Chem A 2015. doi:10.1039/c4ta06655c.
  • [21] Sastre D, Carrillo AJ, Serrano DP, Pizarro P, Coronado JM. Exploring the Redox Behavior of La0.6Sr0.4Mn1−xAlxO3 Perovskites for CO2-Splitting in Thermochemical Cycles. Top Catal 2017;60:1108–18. doi:10.1007/s11244-017-0790-4.
  • [22] Pechini MP. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor 1967.
  • [23] Kamarul Bahrain AM, Ida S, Ishihara T. Al-doped La0.5Sr0.5MnO3 as oxide anode for solid oxide fuel cells using dry C3H8 fuel. J Solid State Electrochem 2017;21:161–70. doi:10.1007/s10008-016-3356-7.
  • [24] Wang L, Al-Mamun M, Zhong YL, Jiang L, Liu P, Wang Y, et al. Ca 2+ and Ga 3+ doped LaMnO 3 perovskite as a highly efficient and stable catalyst for two-step thermochemical water splitting. Sustain Energy Fuels 2017;1:1013–7. doi:10.1039/C6SE00097E.