GÜNEŞ ENERJİSİ DESTEKLİ ISI POMPASI SİSTEMLERİNİN PERFORMANSININ İNCELENMESİ: MUĞLA ÖRNEĞİ

Bu çalışmada solar termal sistemlerin ısı pompası ile kombinasyonu sayısal olarak incelenmiştir. Kollektörlerin potansiyel faydası ısı pompası sistemleri kombine sistemlerle karşılaştırılarak bulunmuştur. Muğla ili için tüm simülasyonlar POLYSUN programı kullanılarak yapılmıştır. Simülasyonu yapılan sistemler tek haneli konutların kullanım sıcak suyu ve konut ısıtması ihtiyacını karşılayacak şekilde tasarlanmıştır. Bu çalışmanın sonuçları sistemin mevsimsel performans faktörünün hava kaynaklı ısı pompası sistemine eklenen kollektör alanı arttıkça arttığını göstermektedir. Ancak ısı talebinin karşılandığı sistemlerde ısı pompasının ısıtma tesir katsayısının azaldığı sonucuna ulaşılmıştır. Bu sistemde solar enerji sıcak su ihtiyacını karşılamak için kullanılırken bir taraftan da konut ısıtılmasına destek olmaktadır. Ancak yetersiz kapasitede ısı pompası seçilerek kollektör sayısının arttırılmasının talebi karşılamadığı bu nedenle yeterli kapasitede ısı pompası seçilmesi gerektiği saptanmıştır. Isı talebinin karşılanamadığı sistemlerde ise 2 kollektörden sonra ısıtma tesir katsayısının sabit kaldığı görülmüştür. 2 kollektörden fazla sayıda kullanılan kollektörler yazın ihtiyaç fazlalığından kapatılmaktadır. Ancak kış döneminde ısıtmaya destek olmaktadır.

INVESTIGATION OF PERFORMANCE OF SOLAR-ASSISTED HEAT PUMP SYSTEMS: MUĞLA EXAMPLE

In this study, the combination of solar thermal systems with heat pump has been investigated numerically. The potential utility of the collectors is found by comparing heat pump systems with combined systems. All simulations for the Muğla province were made using the POLYSUN program. The simulated systems are designed to meet the demand for hot water and residential heating of single-dwelling houses. The results of this study show that the seasonal performance factor of the system increases as the collector field added to the air source heat pump system increases. However, in the systems where the heat demand is met, the heating effect coefficient of the heat pump (COPHP) decreases. In this system, solar energy is used to meet the need for hot water, while also supporting housing heating. However, it has been determined that the heat pump should be selected at a sufficient capacity because the increase in the number of collectors by selecting the heat pump at the insufficient capacity cannot meet the demand. However, it has been determined that the heat pump should be selected at a sufficient capacity because the increase in the number of collectors by selecting the heat pump at the insufficient capacity cannot meet the demand. In the systems where the heat demand cannot be met, the heating effect coefficient after 2 collectors is found to be constant. Collectors used in excess of 2 collectors are closed when there is no need for them. However, it supports heating in winter.

___

  • Dikici, A. (2004) Experimental investigation of ground source, solar source and air source heat pump for domestic heating in Elazığ, Ph.D., Fırat University, Elazığ, 211s.
  • Gündüz, A.B. (2007) The performance of a solar-assisted heat pump water heating system in Bilecik, MS, Eskişehir Osmangazi University, Eskişehir, 123s.
  • Açıkgöz Ö. (2007) The investigation of solar energy support in a combined energy system, MS, Yıldız Technical University, Istanbul, 103s.
  • Liang C., Zhang, X., Li, X. and Zhu, X. (2011) Study on the performance of a solar assisted air source heat pump system for building heating, Energy and Buildings, 43 : 2188-2196.
  • Deng, S., Dai, Y.J. and Wang, R.Z. (2013) Performance optimization and analysis of solar combi-system with carbon dioxide heat pump, Solar Energy, 98 : 212–225.
  • Aydın, A. (2013) Experimental observation of water heater on the collector with vacuum tube supported with heat pump, M.Sc., Karabük University, Karabük, 41s.
  • Carbonell, D., Haller, M.Y. and Frank, E. (2014) Potential benefit of combining heat pumps with solar thermal for heating and domestic hot water preparation, Energy Procedia, 57 : 2656–2665.
  • González, J.P., Yousif, C. (2015) Prioritising energy efficiency measures to achieve a zero net-energy hotel on the island of Gozo in the central Mediterranean, Energy Procedia, 83 : 50 – 59.
  • Good, C., Andresen, I. and Hestnes, A.G., (2015) Solar energy for net zero energy buildings – A comparison between solar thermal, PV and photovoltaic–thermal (PV/T) systems, Solar Energy, 122 : 986–996.
  • Bessa, V.M.T. and Prado, R.T.A. (2015) Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing, Energy Policy, 83 : 138–150.
  • Ghafoor, A. and Fracastoro, G.V., (2015) Cost-effectiveness of multi-purpose solar thermal systems and comparison with PV-based heat pumps, Solar Energy, 113 : 272–280.
  • Shipkovs, P., Snegirjovs, A, Shipkovs, J., Kashkarova, G., Lebedeva, K. and Migla, L., 2015. “Solar thermal cooling on the northernmost latitudes”, Energy Procedia 70: 510–517.
  • Good, C.S., Lobaccaro, G. and Hårklau, S. (2014) Optimization of solar energy potential for buildings in urban areas – a Norwegian case study, Energy Procedia, 58 : 166–171.
  • Bornatico, R., Hüssy, J., Witzig, A. and Guzzella, L. (2013) Surrogate modeling for the fast optimization of energy systems, Energy, 57 : 653-662.