DC MOTOR KONUM KONTROLÜ İÇİN MODEL REFERANS UYARLAMALI PID DENETLEYİCİ TASARIMI: PID VE BULANIK DENETLEYİCİLERİYLE KARŞILAŞTIRILMASI

Bazen geleneksel geri beslemeli kontrolörleri, çevresel koşullarda oluşan değişikler, zamanla oluşan proses dinamiklerindeki değişiklik ve bozucu etkenlerin karakteristiklerindeki değişimlerden dolayı iyi performans göstermeyebilir. Bu sorunların üstesinden gelebilmek için, uyarlamalı denetim yöntemleri geliştirilmiştir. Bu bağlamda, DC motorun konum kontrolü için MIT kuralı kullanarak Model Referans Uyarlamalı PID Denetleyici (MRUPIDD) tasarlanarak uygulanmıştır. Aynı zamanda, bu kontrol yöntemi Matlab-Simulink destekli Waijung blok seti ile düşük maliyetli STM32F4 uygulama geliştirme kiti kullanılarak gerçeklenmiş ve PID ve bulanık mantık kontrol yöntemleri ile karşılaştırılmıştır. Birim basamak ve sinüzoidal girişler ve ölçüm gürültüsü gibi bozucu etkiler altında elde edilen sonuçlar sunulmuştur.

DESIGN OF A MODEL REFERENCE ADAPTIVE PID CONTROLLER FOR DC MOTOR POSITION CONTROL: COMPARED WITH PID AND FUZZY CONTROLLERS

Sometimes conventional feedback controllers may not perform well due to changes in environmental conditions, changes in process dynamics that occur over time and changes in characteristics of disturbances. To overcome these problems, adaptive control methods have been developed. In this regard, a Model Reference Adaptive PID Controller (MRAPIDC) is designed using the MIT rule for position control of the DC motor in this study. At the same time, this control method is implemented using a low cost STM32F4 application development kit with Matlab-Simulink supported Waijung block set and compared with PID and fuzzy logic control methods. The results obtained with/without measurement noise disturbance under unit step and sinusoidal inputs are presented.

___

  • [1] Bingül, Z. and Küçük, S., Robot Dinamiği ve Kontrolü, Umuttepe Yayınları, Kocaeli, 2017.
  • [2] Xiong, A. and Fan, Y., “Application of a PID Controller using MRAC Techniques for Control of the DC Electromotor Drive”, International Conference on Mechatronics and Automation, 2007, pp. 2616-2621.
  • [3] Elsodany, N. M., Rezeka, S. F., and Maharem, N.A., “Adaptive PID control of a stepper motor driving a flexible rotor”, Alexandria Engineering Journal, Vol. 50, pp. 127-136, 2011.
  • [4] Jain, P., and Nigam, D. M. J., “Design of a Model Reference Adaptive Controller Using Modified MIT Rule for a Second Order System”, Advance in Electronic and Electric Engineering, Vol. 3, pp. 477-484, 2013.
  • [5] Nikranjbar, A., “Model Reference Adaptive PID Control of Servo Speed DC Motor”, Majlesi Journal of Mechatronic Systems, Vol. 2, pp. 7-13, 2013.
  • [6] Sar, S. K., Tech, M., and Dewan, L., “MRAC Based PI Controller for Speed Control of D.C. Motor Using Lab View”, WSEAS TRANSACTIONS on SYSTEMS and CONTROL, Vol. 9, pp. 10-15, 2014.
  • [7] Butler, H., Honderd, G., and van Amerongen, J., “Model reference adaptive control of a direct-drive DC motor”, IEEE Control Systems Magazine, Vol. 9, pp. 80- 84, 1989.
  • [8] Platzer, D. and Kaufman, H., “Model Reference Adaptive Control of Thyristor Driven DC Motor Systems Subject to Current Limit a Tions”, IFAC Proceedings Volumes, Vol. 17, pp. 1991-1995, 1984.
  • [9] Yeniaydın, Y., Sakacı, B., Yaren, T., Süel, V., and Kizir, S., “DC Motor Hız Kontrolü için Model Referans Uyarlamalı PID Denetleyici Tasarımı”, Türk Otomotiv Konferansı, 2014, pp. 313-319.
  • [10] Barber, R., Rosa, D. R. and Garrido, S., “Adaptive control of a DC motor for educational practices”, IFAC Proceedings Volumes, Vol. 46, pp. 244-249, 2013.
  • [11] Ali A. T. and Tayeb, E. B. M., “Adaptive PID Controller for Dc Motor Speed Control”, International Journal of Engineering Inventions, Vol. 1, pp. 26-30, 2012.
  • [12] Mehmeti, Xh., “Adaptive PID controller design for joints of Humanoid Robot”, IFAC-Pap., Vol. 52, pp. 110-112, 2019.
  • [13] Ge, L., Liu, B., and Wang, T., “Improvement of surface temperature control system based on fuzzy adaptive PID algorithm”, International Conference on Robotics, Intelligent Control and Artificial Intelligence - RICAI, 2019, pp. 368-373.
  • [14] Shamseldin, M. A., Sallam, M., Bassiuny, A. H., and Ghany, A. M. A., “A novel self-tuning fractional order PID control based on optimal model reference adaptive system”, International Journal of Power Electronics and Drive System (IJPEDS), Vol. 10, pp. 230-241, 2019.
  • [15] Zhiwei, A., Jianbo, J., Pengju, W., Ruijing, L., and Hua, Z., “Design of model reference adaptive control for fast steering mirror based on generalized error fast differential method”, 5th International Conference on Advanced Computing, Networking and Security (ADCONS), 2019, pp. 18-26.
  • [16] Rao, N. A., and Kumar, D. C. R., “Speed Control of Brushless Dc Motor by Using PID and Fuzzy Logic Controller”, IJIRT, Vol. 6, pp. 72-77, 2019.
  • [17] Singh, A. kumar, Saxena, A., Terang, P. Poon, Tulsyan, P., and Waris, M., “Speed Control of DC Motor Using Chopper Based on Fuzzy Logic”, IOP Conf. Ser. Mater. Sci. Eng., 2019, pp. 1-8.
  • [18] “Control Tutorials for MATLAB and Simulink - Motor Position: Simulink Modeling”. [Çevrimiçi]. Erişim adresi: http://ctms.engin.umich.edu/CTMS/index.php?example =MotorPosition§ion=SimulinkModeling. [Erişim: 21-Kas-2019].
  • [19] Kizir, S., Yaren, T. and Kelekçi, E., Gerçek Zamanlı Kontrol, Seçkin Yayınevi, Ankara, 2019.
  • [20] Köse, F., Kaplan, K. and Ertunç, H. M., “PID ve Bulanık Mantık ile DC Motorun Gerçek Zamanda STM32F407 Tabanlı Hız Kontrolü”, Türk Otomotiv Konferansı, 2013, pp. 1178-1183.
  • [21] Åström K. J. and Wittenmark, B., Adaptive Control: Second Edition, Courier Corporation, 2013.
  • [22] Machine Theory, System Dynamics and Control Division, “Laboratory Manual - Position Control of Rotary Servo Base Unit using PIV Controller”, Department of Mechanical Engineering, Yildiz Technical University