DESIGN OF A MODEL REFERENCE ADAPTIVE PID CONTROLLER FOR DC MOTOR POSITION CONTROL: COMPARED WITH PID AND FUZZY CONTROLLERS

Sometimes conventional feedback controllers may not perform well due to changes in environmental conditions, changes in process dynamics that occur over time and changes in characteristics of disturbances. To overcome these problems, adaptive control methods have been developed. In this regard, a Model Reference Adaptive PID Controller (MRAPIDC) is designed using the MIT rule for position control of the DC motor in this study. At the same time, this control method is implemented using a low cost STM32F4 application development kit with Matlab-Simulink supported Waijung block set and compared with PID and fuzzy logic control methods. The results obtained with/without measurement noise disturbance under unit step and sinusoidal inputs are presented.

___

  • [1] Z. Bingül ve S. Küçük, Robot Dinamiği ve Kontrolü. Kocaeli: Umuttepe Yayınları, 2017.
  • [2] A. Xiong ve Y. Fan, “Application of a PID Controller using MRAC Techniques for Control of the DC Electromotor Drive”, içinde 2007 International Conference on Mechatronics and Automation, 2007, ss. 2616-2621, doi: 10.1109/ICMA.2007.4303969.
  • [3] N. M. Elsodany, S. F. Rezeka, ve N. A. Maharem, “Adaptive PID control of a stepper motor driving a flexible rotor”, Alex. Eng. J., c. 50, sy 2, ss. 127-136, Haz. 2011, doi: 10.1016/j.aej.2010.08.002.
  • [4] P. Jain ve D. M. J. Nigam, “Design of a Model Reference Adaptive Controller Using Modified MIT Rule for a Second Order System”, s. 8.
  • [5] A. Nikranjbar, “Model Reference Adaptive PID Control of Servo Speed DC Motor”, c. 2, sy 2, s. 7, 2013.
  • [6] S. K. Sar, M. Tech, ve L. Dewan, “MRAC Based PI Controller for Speed Control of D.C. Motor Using Lab View”, c. 9, s. 6, 2014.
  • [7] H. Butler, G. Honderd, ve J. van Amerongen, “Model reference adaptive control of a direct-drive DC motor”, IEEE Control Syst. Mag., c. 9, sy 1, ss. 80-84, Oca. 1989, doi: 10.1109/37.16756.
  • [8] D. Platzer ve H. Kaufman, “Model Reference Adaptive Control of Thyristor Driven DC Motor Systems Subject to Current Limit a Tions”, IFAC Proc. Vol., c. 17, sy 2, ss. 1991-1995, Tem. 1984, doi: 10.1016/S1474-6670(17)61268-0.
  • [9] Y. Yeniaydın, B. Sakacı, T. Yaren, V. Süel, ve S. Kizir, “DC Motor Hız Kontrolü için Model Referans Uyarlamalı PID Denetleyici Tasarımı”, s. 7.
  • [10] R. Barber, D. R. Rosa, ve S. Garrido, “Adaptive control of a DC motor for educational practices”, IFAC Proc. Vol., c. 46, sy 17, ss. 244-249, 2013, doi: 10.3182/20130828-3-UK-2039.00056.
  • [11] A. T. Ali ve E. B. M. Tayeb, “Adaptive PID Controller for Dc Motor Speed Control”, s. 5.
  • [12] “Control Tutorials for MATLAB and Simulink - Motor Position: Simulink Modeling”. [Çevrimiçi]. Erişim adresi: http://ctms.engin.umich.edu/CTMS/index.php?example=MotorPosition§ion=SimulinkModeling. [Erişim: 21-Kas-2019].
  • [13] S. Kizir, T. Yaren, ve E. Kelekçi, MATLAB SİMULİNK DESTEKLİ Gerçek Zamanlı Kontrol. Ankara: Seçkin Yayınevi, 2019.
  • [14] F. Köse, K. Kaplan, ve H. M. Ertunç, “PID ve Bulanık Mantık ile DC Motorun Gerçek Zamanda STM32F407 Tabanlı Hız Kontrolü”, s. 6, 2013.
  • [15] K. J. Åström ve B. Wittenmark, Adaptive Control: Second Edition. Courier Corporation, 2013.